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Metabolomic approach

In many life sciences applications,

there is a growing interest in

applying metabolomic techniques

Metabolomics refers to an analytical

description of biological samples by

defining « metabolic » fingerprintings

Multivariate statistical analyses are

applied to characterize compounds

and to differenciate samples
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Metabolomics and multiblock data

 a more interpretable knowledge

 a better picture of the biological system

Coupling data to provide:

Measurements

Model

Multiblock data

metabolomic

free amino acids

macronutrients
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Recall of PLS-DA

PLS-DA within the multiblock framework

Relating the composition of breast milk 
with the growth of premature babies

Conclusion

Overview
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Recall of PLS -DA

max𝑣𝑎𝑟 𝑃𝑦𝑡

Determine a latent component t which separates the best the groups

PLS-DA criterion (Nocairi & al.,2005): 

with t = Xw and 𝑃𝑦 denotes the projector associated to the Y binary matrix

Component obtained by diagonalization of the between groups covariance matrix

tX

Y

C

𝑋1

𝑋2

Nocairi, H., Qannari, E. M., Vigneau, E., & Bertrand, D. (2005). Discrimination on latent components with respect 

to patterns. Application to multicollinear data. Computational statistics & data analysis, 48(1), 139-147.
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Equivalence between PLS –DA and PLS2

max𝑣𝑎𝑟 𝑃𝑦𝑡Formulation of the PLS-DA criterion: 

Recall of PLS2 criterion:

max 𝑐𝑜𝑣2 𝑡, 𝑢 = 𝑐𝑜𝑟2 𝑡, 𝑢 × 𝑣𝑎𝑟 𝑡 × 𝑣𝑎𝑟(𝑢)

In the case of dichotomous variables, 𝑣𝑎𝑟(𝑢) should be neglected

This leads to consider 𝑌∗ = 𝑌 𝑌𝑇𝑌 −  1 2 instead of 𝑌 to account for the frequencies

of the categories

tX Yu C

tX u Y C
a
a
a
b
b
b

Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of chemometrics, 17(3), 166-173.
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PLS-DA within the multiblock framework

𝑡𝑖
1
= 𝑋1𝑤𝑖

1

𝑡𝑖
2
= 𝑋2𝑤𝑖

2

𝑡𝑖
K
= 𝑋K𝑤𝑖

K

𝑡𝑖 =  

𝑘=1

𝐾

𝑎𝑖𝑘𝑡𝑖
𝑘

… …

Extract simultaneously block components

and global components which best

account for the between groups variability

𝑋1

𝑋2

𝑋K
 𝑡𝑖: 𝑖

𝑡ℎ global component

 𝑡𝑖
k
= 𝑋k𝑤𝑖

k
: 𝑖𝑡ℎ block component 

associated to 𝑋k
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PLS-DA within the multiblock framework

Block Level

Super Level

1

1X

5

3

4

2

𝑡1

𝑤1
𝑘 𝑇

𝑤1
𝐾 𝑇

𝑤1
1 𝑇

𝑡1
(1)

𝑡1
(𝐾)

𝑎1
𝑇

𝑢1

subsequent components determined in the same way after a deflation step

2. 𝑤1
(𝑘)
=
𝑋𝑘
T𝑃𝑌𝑡1

𝑋𝑘
T𝑃𝑌𝑡1

1. 𝑢1 = 𝑃𝑦𝑡1

𝑡1
(𝑘)

3. 𝑡1
k
= 𝑋1𝑤1

k

4. 𝑎1𝑘 = 𝑐𝑜𝑣 𝑡1
(𝑘)
, 𝑢1

𝑎1 = 1

5. 𝑡1 =  𝑘=1
𝐾 𝑎1𝑘𝑡1

𝑘

max  

𝑘=1:𝐾

𝑐𝑜𝑣2 𝑡1
(𝑘)
, 𝑢1 with 𝑡1

(𝑘)
= 𝑋𝑘𝑤1

(𝑘)
𝑤1
(𝑘)
= 1 𝑘 = 1:𝐾

max𝑣𝑎𝑟 𝑃𝑦𝑡1

𝑋1 𝑋k 𝑋K
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Relating the composition of breast milk with the growth 

of premature babies

A better understanding of the impact of perinatal nutrition 

on the growth of premature babies

LACTACOL project French Clinical Trial N° NCT01493063 
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Relating metabolomics, free amino-acids and 

nutritional blocks with the growth

 18 pre-term newborns (28 - 34 weeks of amenorrhea) classified into two

categories of postnatal growth:

 expected growth (n1=9 newborns) 

 suboptimal growth (n2=9 newborns) 

 Representative breast milk sample of the last 24 hours, each week

 Lipidomic fraction, extracted using Bligh-Dyer method, analyzed through

metabolomics analytical tools (namely LCHR-MS)

3280 metabolites 6 macronutrients21 free 

amino acids
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Variable selection on the metabolomics block 

Use of a mixed model and PLS-DA with the VIP criterion

459 metabolites (VIP> 1.5)

1223 metabolites (VIP> 1)

1571 metabolites (VIP> 0,8)
190 metabolites (α=10%)

98 metabolites (α=5%)

141 metabolites common to the two selection procedures
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MB PLS-DA applied on metabolomics, free amino

acids and nutritional blocks
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PLS-DA Base de données MIRIS: Cercle des correlations
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MB PLS-DA applied on metabolomics, free amino

acids and nutritional blocks

Comp 1  Comp 2
Metabo 0.74    0.23    
Acides A  0.14    0.22
MIRIS     0.12    0.55

Block weights 𝑎

Global components correlation ratio

Block components correlation ratio

Comp 1   Comp 2
RG   0.66     0.06

Comp 1  Comp 2  
Metabo 0.62    0.06   
Acides A 0.21    0.04    
MIRIS    0.08    0.03

Best separation with the

metabolomic block

MB PLS-DA provides:

 correlation ratio both at the

global and block levels

 Factorial representations

associated to each block
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Conclusion

MB PLS-DA:

 a synthesis of PLS-DA performed separately on each data block

 determination of weights associated to each block reflecting its

contribution to the separation of the groups

Biological interpretation:

 Among the 141 metabolites selected, 26 have been annotated. They

correspond to different categories of lipids based on their chemical

structure

More work is needed regarding the cross-validation step
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Thank you for your attention
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