COMPUTATION ON PARTITIONNED MATRICES IN CHEMOMETRICS AND SENSOMETRICS

MOHAMED HANAFI & DAVID LEGLAND

<u>mohamed.hanafi@oniris-nantes.fr</u> david.legland@nantes.inra.fr

Institut National de la Recherche Agronomique

SUMMARY

• Motivation and aims.

• Issues and contributions.

• Conclusions and perspectives.

1.1. FOREWORD

- Does not consider chemometrics (sensometrics) from its purpose (Extract knowledge from data) but its two main components (data and methods)
- The data sets are conceptualized as matrices and methods use intensively matrix algebra.
- The matrix algebra is an essential component of chemometrics (sensometrics).

1.2. Starting point...

• Increasingly, the matrices involved in chemometrics (sensometrics) are associated with one or more partitions.

- The partitions are an important aspect of data and methods in chemometrics (sensometrics)
 - The partition can be an important part of the data sets themselves. (Example multiblock data)
 - The partition can be a part of the method (clustering methods)
 - The partition can be latent which emerged during the implementation of algorithms (eg. Cross-validation procedure).

1.3. Hypothesis and Aims

THE TREE THAT HIDES THE FOREST

tree is matrix algebra. the forest is partitioned matrix algebra.

• Aims

- To formalize a framework for computing on partitioned matrices.
- To introduce rules and concepts to perform computation on partitioned matrices.
- To study the contribution of this framework in chemometrics (sensometrics).

• Interests.

- A framework that provides powerful tools for fast prototyping algorithms.
- A framework that offers effective tools to disseminate and implement chemometrics (sensometrics) algorithms and methods.
- A framework inspired by chemometrics (sensometrics) for new developments in mathematics

2.1. ISSUE (1)

How to choose an appropriate class from several kinds of partitionned matrices?

- Partitionned Matrix = Matrix + Partition of the positions of its elements.
- Block-matrices are partitioned matrices where the partition of its elements can be described as a partition on the rows or columns or both at once.

3

Several kinds of partitionned matrices

2.2. Contribution (1)

Definitions and Notations for block-Matrices

• Partition of an integer.

- A partition on an integer *n* in *k* parts is a decomposition of *n* as : $n = \sum_{i=1}^{k} \tau_i$ $(\tau_i \neq 0)$
- $\mathbf{P}_{k}(n)$ denotes the set of partitions of n in k parts.

• Partition of a pair of integers.

• A partition of a pair of integers (n,p) is an element of $\mathbf{P}_{(k,\bar{k})}(n,p) = \mathbf{P}_k(n) \times \mathbf{P}_{\bar{k}}(p)$

• Block-Matrix.

- An element of $\widetilde{\mathbf{M}}_{\mathbf{P}_{(k,\bar{k})}(n,p)} = \mathbf{M}_{(n,p)} \times \mathbf{P}_{(k,\bar{k})}(n,p)$ is called block-matrix
- A block-matrix is a pair of a matrix and a partition of its dimension.
- A partition of the dimension of a matrix is called Block-dimension.

• Notation for block-matrix

((4),(7)),((1,1,1,1),(7)),((1,1,1,1),(1,1,1,1,1,1)),((2,2),(2,3,2)),

Some partitions of (4,7)

How to handle block-matrix on scientific software (here R or Matlab)?

BlockMatrix toolbox

David Legland.

https://github.com/dlegland/BlockMatrixToolbox

Gaston Sanchez

https://github.com/gastonstat/blockberry

CONTRIBUTION (2) : TWO TOOLBOXES FOR BLOCK-MATRICES.

```
>> A = BlockMatrix(reshape(1:20, [5 4]), {[3 2], [2 2]})
```

A =

```
BlockMatrix object with 5 rows and 4 columns
row dims: 3 2
col dims: 2 2
1 6 11 16
2 7 12 17
3 8 13 18
```

4	9	14	19
5	10	15	20

>> getMatrix(A)

ans =

1	6	11	16
2	7	12	17
3	8	13	18
4	9	14	19
5	10	15	20

>> blockDimensions(A)

ans =

BlockDimensions object with 2 dimensions ((3, 2), (2, 2))

Working with a block-matrix

$f_{x} >>$

```
>> rowBlock=blockDimensions(A,1)
rowBlock =
IntegerPartition object with 2 terms
   (3, 2)
>> colBlock=blockDimensions(A,2)
colBlock =
IntegerPartition object with 2 terms
   (2, 2)
>> size(A)
ans =
    5 4
>> blockNumber(A)
ans =
     4
>> blockSize(A)
ans =
     2
           2
```

Sizes of block-matrices

2.4. ISSUE (3)

To what extend matrix product can be extended to block matrix ?

2.5. CONTRIBUTION (3)

Introduce and unify (9+6=15) products for block-matrices

$$\underbrace{\mathbf{X}}_{\left(P_{k_{\mathbf{X}}}(n_{\mathbf{X}}), P_{\bar{k}_{\mathbf{X}}}(p_{\mathbf{X}})\right)} = \underbrace{\mathbf{A}}_{\left(P_{k_{\mathbf{A}}}(n_{\mathbf{A}}), P_{\bar{k}_{\mathbf{A}}}(p_{\mathbf{A}})\right)}^{*} (\omega_{1}, \omega_{2}) \underbrace{\mathbf{B}}_{\left(P_{k_{\mathbf{B}}}(n_{\mathbf{B}}), P_{\bar{k}_{\mathbf{B}}}(p_{\mathbf{B}})\right)}$$

Notation	Block definition	remark
* (s,s)	$\mathbf{X}_{ij} = a_{11} *_{s} \mathbf{B}_{ij}$	Well known
* (s,h)	$\mathbf{X}_{ij} = \mathbf{A}_{11} *_{h} \mathbf{B}_{ij}$	New
* (s,u)	$\mathbf{X}_{ij} = \mathbf{A}_{11} *_{u} \mathbf{B}_{ij}$	M. Günther, and L. Klotz (2012)
* (s,k)	$\mathbf{X}_{ij} = \mathbf{A}_{11} *_k \mathbf{B}_{kj}$	Koning Neudecker, Wansbeek(1991)
* (h,s)	$\mathbf{X}_{ij} = a_{ij} *_{s} \mathbf{B}_{ij}$	New
* (h,h)	$\mathbf{X}_{ij} = \mathbf{A}_{ij} *_{h} \mathbf{B}_{ij}$	Well known
* (h,u)	$\mathbf{X}_{ij} = \mathbf{A}_{ij} *_{u} \mathbf{B}_{ij}$	Horn, Mathias and Nakamura (1991)
* (h,k)	$\mathbf{X}_{ij} = \mathbf{A}_{ij} *_{k} \mathbf{B}_{ij}$	R. A. Horn et al (1992)
* (u,s)	$\mathbf{X}_{ii} = \sum_{k=1}^{k_A} a_{ik} *_{s} \mathbf{B}_{ki}$	New
	k=1	

Notation	Names	remark
*(u,h)	$\mathbf{X}_{ij} = \sum_{k}^{k} \mathbf{A}_{ik} *_{h} \mathbf{B}_{kj}$	New
* (u,u)	$\mathbf{X}_{ij} = \sum_{k \neq l}^{k \neq l} \mathbf{A}_{ik} *_{u} \mathbf{B}_{kj}$	Well known
* (u,k)	$\mathbf{X}_{ij} = \sum_{k_A}^{k_{k=1}^{k_A}} \mathbf{A}_{ik} *_k \mathbf{B}_{kj}$	W. De Launey and J. Seberry (1994)
* (k,s)	$\mathbf{X}_{ij} \stackrel{\overline{k=1}}{=} a_{11} *_{s} \mathbf{B}_{ij}$	= kronecker
* (k,h)	$\mathbf{X}_{ij} = \mathbf{A}_{ij} *_{h} \mathbf{B}_{11}$	⇔ *(s,h)
* (k,u)	$\mathbf{X}_{ij} = \mathbf{A}_{ij} *_{u} \mathbf{B}_{11}$	⇔ *(s,u)

2.6. ISSUE (4)_{HOW THE FRAMEWORK IS USEFUL ?}

UN EXAMPLE : FAST PROTOTYPING ALGORITHMS FOR MULTIBLOCK METHODS

1. Van de Geer, J.P. (1984). Linear relations among k sets of variables. Psychometrika, 49, 79–94.

2. Hanafi, M., Ten Berge, J. (2003). Psychometrika ,vol. 68, NO. 1, 97–103.

1		<pre>function [q,init,lamda] = maxbet(data,vec,t,tol)</pre>		
2	-	a <mark>_</mark> data'*data		
3	-	k=length(vec) ;%nombre de blok%		
4	-	[<mark>n</mark> ,p]=size(a);%colonne de xx		
5	-	<u>i1</u> =0;		
6	-	12=0;		
7	-	<pre>lamda=zeros(k,1);</pre>		
8		<pre>%t=rand(p,1);</pre>		
9	-	i1=0;		
0.	-	i2=0;		
1	-	for i=1:k,		
2	-	i1=i1+1;		
.3	-	i2=i2+vec(i);		
4	-	t(i1:i2,:)=t(i1:i2,:)/norm(t(i1:i2,:));		
5	-	i1=i2;		
6	-	- end		
.7	-	<pre>init=t;</pre>		
8	-	residu=1;		
9	-	<pre>q=zeros(p,1);</pre>		
0	_	while (residu>seuil)		
1	_	y=a*t;		
1	-	y=a*t; i1=0; Without		
1	- - -	y=a*t; i1=0; BlockMatrix Toolbox		
1 2 3	- - -	y=a*t; i1=0; i2=0; Without BlockMatrix Toolbox		
1 2 3 4 5	- - - -	<pre>y=a*t; i1=0; i1=0; i2=0; for i=1:k,</pre> Without BlockMatrix Toolbox		
22 23 24 25 26	- - - -	<pre>y=a*t; i1=0; i1=0; i2=0; for i=1:k, i1=i1+1;</pre> Without BlockMatrix Toolbox		
1 2 2 3 4 5 2 6 7	- - - - -	<pre>y=a*t; i1=0; i1=0; for i=1:k, i1=i1+1; i2=i2+vec(i);</pre> Without BlockMatrix Toolbox		
1 2 3 4 5 6 7 8		<pre>y=a*t; i1=0; i1=0; i2=0; for i=1:k, i1=i1+1; i2=i2+vec(i); q(i1:i2,:)=y(i1:i2,:)/norm(y(i1:i2,:)); i1=i2:</pre>		
1 2 3 4 5 6 7 8 9		<pre>y=a*t; i1=0; i1=0; i2=0; for i=1:k, i1=i1+1; i2=i2+vec(i); q(i1:i2,:)=y(i1:i2,:)/norm(y(i1:i2,:)); i1=i2; ord</pre>		
1 2 3 4 5 6 7 8 9 0		<pre>y=a*t; i1=0; i1=0; i2=0; for i=1:k, i1=i1+1; i2=i2+vec(i); q(i1:i2,:)=y(i1:i2,:)/norm(y(i1:i2,:)); i1=i2; end regiduraba(t1tatt_g1tatg);</pre>		
1 2 3 4 5 6 7 8 9 0 1 2		<pre>y=a*t; i1=0; i1=0; i2=0; for i=1:k, i1=i1+1; i2=i2+vec(i); q(i1:i2,:)=y(i1:i2,:)/norm(y(i1:i2,:)); i1=i2; end residu=abs(t'*a*t-q'*a*q); t=q;</pre>		
1 2 3 4 5 6 7 8 9 0 1 2 3		<pre>y=a*t; i1=0; i1=0; i2=0; for i=1:k, i1=i1+1; i2=i2+vec(i); q(i1:i2,:)=y(i1:i2,:)/norm(y(i1:i2,:)); i1=i2; end residu=abs(t'*a*t-q'*a*q); t=q; end</pre>		
1 2 3 4 5 6 7 8 9 10 1 2 3 4		<pre>y=a*t; i1=0; i1=0; i2=0; for i=1:k, i1=i1+1; i2=i2+vec(i); q(i1:i2,:)=y(i1:i2,:)/norm(y(i1:i2,:)); i1=i2; end residu=abs(t'*a*t-q'*a*q); t=q; end i1=0;</pre>		
1 2 3 4 5 16 17 18 9 10 1 2 3 4 5		<pre>y=a*t; i1=0; i1=0; i2=0; for i=1:k, i1=i1+1; i2=i2+vec(i); q(i1:i2,:)=y(i1:i2,:)/norm(y(i1:i2,:)); i1=i2; end residu=abs(t'*a*t-q'*a*q); t=q; end i1=0; i2=0;</pre>		
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6		<pre>y=a*t; i1=0; i1=0; i2=0; for i=1:k, i1=i1+1; i2=i2+vec(i); q(i1:i2,:)=y(i1:i2,:)/norm(y(i1:i2,:)); i1=i2; end residu=abs(t'*a*t-q'*a*q); t=q; end i1=0; i2=0; for i=1:k.</pre>		
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7		<pre>y=a*t; ill=0; il=0; i2=0; for i=1:k, i1=i1+1; i2=i2+vec(i); q(i1:i2,:)=y(i1:i2,:)/norm(y(i1:i2,:)); i1=i2; end residu=abs(t'*a*t-q'*a*q); t=q; end i1=0; i2=0; for i=1:k, i1=i1+1;</pre>		
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8		<pre>y=a*t; il=0; il=0; i2=0; for i=1:k, i1=il+1; i2=i2+vec(i); q(i1:i2,:)=y(i1:i2,:)/norm(y(i1:i2,:)); i1=i2; end residu=abs(t'*a*t-q'*a*q); t=q; end i1=0; i2=0; for i=1:k, i1=i1+1; i2=i2+vec(i);</pre>		
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9		<pre>y=a*t; il=0; il=0; i2=0; for i=1:k, i1=i1+1; i2=i2+vec(i); q(i1:i2,:)=y(i1:i2,:)/norm(y(i1:i2,:)); i1=i2; end residu=abs(t'*a*t-q'*a*q); t=q; end i1=0; i2=0; for i=1:k, i1=i1+1; i2=i2+vec(i); lamda(i,:)=q(i1:i2,:)'*a(i1:i2,:)*q;</pre>		

1 2	<pre>[] function [q, iter, resid] = maxbet_p: %MAXBET_PROCEDURE2 MAXBET procedure</pre>	rocedure2(data, tt, tol) for multi-block matrices.
3 4 5	<pre>% create new BlockMatrix representing qq = blockProduct_hs(1./blockNorm(tt))</pre>	g the normalized input vectors), tt);
6 7 8	AA = blockProduct_uu(data',data);	
9 10	resid = 1;	With
11 12	iter = 0;	BlockMatrix Toolbox
13 14	while resid > tol	
15 16	iter = iter + 1;	
17 18	<pre>q = blockProduct_uu(AA,qq);</pre>	
19 20	<pre>q = blockProduct_hs(1./blockNorm(q), q); % block normalization</pre>	
21	<pre>resid = norm(blockNorm(q) - blockNorm(qq)); % residual</pre>	
23 24	qq = q;	

3.1. CONCLUSIONS

• Clarify the definition and vocabulary for block matrices.

- What is a block matrices and what it is not ?
- Introduce the block-dimension of the block-matrices.
 - How to describe the size of a block-matrix?
- Introduce and unify (15) products for the block-matrices.
- Mount connections examples of the proposed framework with chemometrics.
 - Does this framework is useful for chemometrics?
- Provide operational solution for fast prototyping algorithms that involve block-matrices. (Packages)
 - How to handle and work with block-matrices under R or Matlab?

3.2. PERSEPCTIVES

• There are, at least, 15 different ways to extend intrinsically PCA to block-matrices

$$\mathbf{X} = \mathbf{A} *_{(\omega_1, \omega_2)} \mathbf{B} + \mathbf{R}$$

• In practice, some of the 15 extensions can be relevent in multiblock data analysis perspective

• Identify these extensions is the main perspective of this work.