

New experimental designs for mixture problems

Aurélie Béal¹, Charles Gomes², Magalie Claeys-Bruno¹ & Michelle Sergent¹

¹Aix Marseille Université (France) Laboratoire d'Instrumentation et Sciences Analytiques. EA 4672

ĽORÉAL

²L'ORÉAL Research & Innovation, Aulnay sous Bois

..... drugs, foods and drinks, polymer plastics, ceramics, glass, textile fiber blends, fertilizers, paints,

Experimentation

To search for the <u>optimum</u> of one or several responses in the domain of interest

To know, in the whole experimental domain, the value of the experimental response(s)

Mathematical Model Y = f (X_i)

Marseille

Mixture :

Empirical model: $Y = b_1X_1 + b_2X_2 + b_3X_3 + b_{12}X_1X_2 + b_{13}X_1X_3 + b_{23}X_2X_3$

Complex response surface :

SFD : Space Filling Design

A Space-Filling design (SFD) aims to uniformly spread the experimental points in the domain of the inputs

Some space-filling designs

- **Latin Hypercubes** : Random LHS, Maximin LHS, Improved LHS projection criteria
- **Low discrepancy sequences :** Halton, Hammersley, Faure, Sobol, ...
- Minimax designs : maximum distance between 2 points
- **Dmax designs :** maximum entropy
- Strauss designs : repulsion principle
- → WSP selection algorithm

Marseille

----- WSP algorithm : selection algorithm

Aix⁺Marseille

X[,1]

)16

• Specific experimental constraints

• Increasing density in a zone of particular interest

Adaptative WSP algorithm

Beal A., Claeys-Bruno M., Sergent M., Constructing space-filling designs using an adaptive WSP algorithm for spaces with constraints Accepted in Chemometrics and Intelligent Laboratory System, 2014

Mixture designs

→ <u>Step by Step algorithm</u>:

A set of N points is built by iteration from an initial point, by adding points at a distance \mathcal{R} of the points already in the design

→ <u>Step by Step algorithm</u>:

<u>**Cornell algorithm**</u>: transformation of a classical design in an independant variables space to a mixture design around an interesting point.

$$W = (q-1)\{qX-J\}\theta$$

with , $\boldsymbol{\theta}$: orthogonal matrix

$$X = cWT_1'H + x_0'$$

with , **T** : rotation matrix x_o : point O

ix**+Marseille**

agrostat2016

Mixture designs

Mixture designs

→ <u>Step by Step algorithm</u>:

→ <u>Step by Step algorithm</u>:

Stochastic choose !

Number of points $N = f(\mathcal{R})$

Response surface

Complex response surface :

Thank you for your attention !

Any questions

