

Research

Reconciling mixture designs and factorial designs in order to identify best recipes in a holistic way

A.Rytz, M.Moser, M.Lepage, C.Mokdad, M.Perrot, N.Antille, N.Pineau

Agrostat 2016

Full

Fraction

Process

- Soaking (short-long)
- Cooking (mild-strong)
- Drying (mild-strong)

 $2^3 = 8$ experiments

 $2^{3-1} = 4$ experiments

- Sucrose (0-10%)
- Glucose (0-10%)
- Fructose (0-10%)

 $2^3 = 8$ experiments

P x I

 $2^3 \times 2^3 = 2^6 = 64$ experiments

 $2^{3-1} \times 2^{3-1} = 2^{6-2} = 16$ experiments

(Barton, 1999)

P & I

2⁶⁻³ = 8 experiments (Hedayat, Sloane, Stufken, 1999)

rostat 2016 Proprietary information of Nestlé S. A., Vevey, Switzerland – This document should not be reproduced or disclosed without prior authorisation

Nestle

Method for transforming an orthogonal array into a mixture

	D _{Init}			DInter	mediat	e				D _{Final}		
	AB	AC	ABC	AB	AC	ABC	Sum	Vs. {SUM=10}		AB'	AC'	ABC'
E01	0	0	0	0	0	0	0	-10		3.3	3.3	3.3
E02	0	1	1	0	10	10	20	10		0	5	5
E03	1	0	1	10	0	10	20	10		5	0	5
E04	1	1	0	10	10	0	20	10		5	5	0
E05	1	1	1	10	10	10	30	20		3.3	3.3	3.3
E06	1	0	0	10	0	0	10	0		10	0	0
E07	0	1	0	0	10	0	10	0		0	10	0
E08	0	0	1	0	0	10	10	0		0	0	10
									1			

0 0 0 0 1 10 10 10

- Start with the initial orthogonal array D_{Init}. For each of the *n* experiments and each of the *q* ingredients, replace the low level by the lower bound a_i and the high level by the upper bound b_i, leading to an intermediate design D_{Intermediate} with elements p_i (*t*=1...*n*, *i*=1...*q*).
- In D_{Intermediate}, none or almost none of the mixtures sum to the constant *c*.
- Transform D_{Intermediate} into D_{Final} by adjusting the mixtures according to their excess or lack vs. total amount *c*:
 - In case of a mixtures summing to less than *c*, let the lack of total amount be *w*-Focus on the low level setting components p_{ti} of this mixture. One has to increase by *w* the sum of the selected levels. In order to accomplish it, allocate a portion of *w* to each of these levels proportionally to the range of variation of their respective components.
 - In case of a mixture t in excess of amount w+, the principle remains the same. In this situation, one has simply to select the high levels pti of the mixture. And then decrease the selected high levels proportionally to the range of variation of their respective components.

Method for transforming an orthogonal array into a constrained mixture

0

Mixture

	D _{Init}			DInter	mediat	e			D _{Final}	I	
	AB	AC	ABC	AB	AC	ABC	Sum	Vs. {SUM=10}	AB'	AC'	ABC'
E01	0	0	0	0.0	3.4	1.2	4.6	-5.4	2.1	5.4	2.5
E02	0	1	1	0.0	8.5	4.7	13.2	3.2	0.0	6.6	3.4
E03	1	0	1	5.4	3.4	4.7	13.5	3.5	3.3	3.4	3.3
E04	1	1	0	5.4	8.5	1.2	15.1	5.1	2.8	6.0	1.2
E05	1	1	1	5.4	8.5	4.7	18.6	8.6	2.1	5.4	2.5
E06	1	0	0	5.4	3.4	1.2	10	0	5.4	3.4	1.2
E07	0	1	0	0.0	8.5	1.2	9.7	-0.3	0.2	8.5	1.3
E08	0	0	1	0.0	3.4	4.7	8.1	-1.9	1.0	4.3	4.7
							-				
0	0	3.4	1.2								

The method works for

- Any type of constraints
- Multiple mixtures

1 5.4 8.5 4.7

Nested mixtures

This method is a consensus between established methods

	D-efficiency (2 nd order)	Coverage Index
(a) Adjusted Mixture	0.513	0.579
(b) Extreme Vertices	0.070	0.300
(c) Saxena-Nigam	0.215	0.588
(d) Space-Filling	0.001	1.000
(e) Adjusted Mixture (80%)	0.008	0.944
(f) D-optimal (2 nd order)	1.000	0.435

The proposed design reaches best consensus between

- D-efficiency (Atkinson, 1992)
- Coverage (Johnson, 1990)

In this case, it is the only technique yielding values higher than 0.5 for both indexes.

Proprietary information of Nestlé S. A., Vevey, Switzerland – This document should not be reproduced or disclosed without prior authorisation

This method allows handling complex problems very easily

Phase 1 (2⁷⁻⁴ → 8 experiments)

- Main effects of 4 orthogonal factors (partial replacement of wheat by up to 3 alternative grains + humectant type)
- First order model of 3 mixture factors (Mixture of 3 sugars summing to 10%)

Phase 2 (29-5 → 16 experiments)

- R=V for 4 process factors (humectant, soaking, cooking, drying)
- First order model of 5 mixture factors (Mixture of 5 alternative grains summing to 15%)

	D _{Init}							D	ntermediat			D _{Final}						
	Δ	в	С	ΔB	AC	BC	ABC		Δ B	C	VS.	Α	В	С	AB	AC	BC	ABC
	^	U	0		AC	00		Ľ		0	C	Sugar A	Sugar B	Sugar C	Grain 1	Grain 2	Grain 3	humect.
C1	0	0	0	0	0	0	0	0	.0 3.4	1.2	-5.4	2.1	5.4	2.5	0	0	0	W
C2	1	0	0	1	1	0	1	5	.4 3.4	1.2	0.0	5.4	3.4	1.2	2	2	0	W+
C3	0	1	0	1	0	1	1	0	.0 8.5	1.2	-0.3	0.2	8.5	1.3	2	0	2	W+
C4	1	1	0	0	1	1	0	5	.4 8.5	1.2	5.1	2.8	6.0	1.2	0	2	2	W
C5	0	0	1	0	1	1	1	0	.0 3.4	4.7	-1.9	1.0	4.3	4.7	0	2	2	W+
C6	1	0	1	1	0	1	0	5	.4 3.4	4.7	3.5	3.3	3.4	3.3	2	0	2	W
C7	0	1	1	1	1	0	0	0	.0 8.5	4.7	3.2	0.0	6.6	3.4	2	2	0	W
C8	1	1	1	0	0	0	1	5	.4 8.5	4.7	8.6	2.1	5.4	2.5	0	0	0	W+
		Α		В	(c	D		ABC		ABD	ACD	BCD	ABCD			(Illmar	in, 2009)
	Hu	meet	Soa	aking	Coo	king	Dryi	ng	Grain1	G	rain?	Grain3	Grain/	Grain5	∇Graine			
	Tiu	mect.	dur	ation	cond	lition	condi	ion	Graini	0	Idiliz	Graing	Grain4	Graino	Zorains			
P01		W	sł	nort	m	ild	mil	d	2.0		2.0	3.0	0.0	8.0	15.0			
P02		W	sł	nort	m	ild	stroi	ng	2.0		5.8	6.3	0.9	0.0	15.0	1000	-	
P03		W	sł	nort	stro	ong	mil	d	4.0		2.0	7.7	1.3	0.0	15.0	2	NEStie	-
P04		W	sł	nort	stro	ong	stroi	ng	3.3		5.4	3.0	0.0	3.4	15.0		CTU	1
P05		W	lo	ng	m	ild	mil	d	3.8		6.9	3.0	1.2	0.0	15.0		ESIO	N.
P06		W	lo	ng	m	ild	stroi	ng	3.3		2.0	6.1	0.0	3.6	15.0		Concrete	120
P07		W	lo	ng	stro	ong	mil	d	2.0		4.8	5.4	0.0	2.8	15.0	5	Cereale	e Miller
P08		W	lo	long strong strong		ng	2.7		3.8	4.6	2.0	1.8	15.0	1	3 6	120		
P09	1	N+	sł	nort	m	ild	mil	d	3.3		5.6	6.1	0.0	0.0	15.0		A	AND IN COLOR
P10	1	N+	sł	nort	m	ild	stro	ng	3.8		2.0	3.0	1.2	4.9	15.0	0.023	1	B
P11	1	N+	sł	nort	stro	ong	mil	b	2.0		5.6	3.0	0.9	3.6	15.0	1.10	9	
P12	1	N+	sł	nort	stro	ong	stro	ng	2.1		2.4	10.0	0.1	0.4	15.0	Call	12.5	
P13	1	N+	lo	ng	m	ild	mil	d	2.0		2.0	6.3	0.9	3.8	15.0		3	1.0
P14	1	N+	lo	ng	m	ild	stro	ng	2.0		10.0	3.0	0.0	0.0	15.0	1000		
P15	1	N+	lo	ng	stro	ong	mil	d	5.0		3.6	4.4	0.4	1.6	15.0			
P16	1	N+	lo	ng	stro	ong	stroi	ng	2.9		4.3	5.0	0.6	2.3	15.0	25/4		

Research

Nestle

(Addelman, 1962)

Proprietary information of Nestlé S. A., Vevey, Switzerland – This document should not be reproduced or disclosed without prior authorisation

CONFIDENTIAL

Phase 1 (2⁷⁻⁴ → 8 experiments)

- Initial product ~ 80% Wheat + 20% sucrose
- Perceived sweetness is a key liking driver
- Idea : generate biscuit flavor (congruent with perceived sweetness) through Maillard to reduce sugars
- \rightarrow Identify best combination

Processing (AA from grains + Sugars + Humectant)

Phase 2 (29-5 → 16 experiments)

- On top of grains necessary for AA, include grains with additional nutritional benefits
- Fine-tune process conditions
- \rightarrow New product

~ 75% Wheat + 15% grains + 10% sugars

 \rightarrow Nutritionally balanced & more liked

Research

Reconciling mixture designs and factorial designs in order to identify best recipes in a holistic way

A.Rytz, M.Moser, M.Lepage, C.Mokdad, M.Perrot, N.Antille, N.Pineau

Agrostat 2016