Reconciling mixture designs and factorial designs in order to identify best recipes in a holistic way

A.Rytz, M.Moser, M.Lepage, C.Mokdad, M.Perrot, N.Antille, N.Pineau

Agrostat 2016
Process
• Soaking (short-long)
• Cooking (mild-strong)
• Drying (mild-strong)

Ingredients
• Sucrose (0-10%)
• Glucose (0-10%)
• Fructose (0-10%)

$2^3 = 8$ experiments

$2^3 x 2^3 = 2^6 = 64$ experiments

$2^{3-1} = 4$ experiments

$2^{3-1} x 2^{3-1} = 2^{6-2} = 16$ experiments

$2^{6-3} = 8$ experiments

(Hedayat, Sloane, Stufken, 1999)
Process
- Soaking (short-long)
- Cooking (mild-strong)
- Drying (mild-strong)

Mixture
- Sucrose (0-10%)
- Glucose (0-10%)
- Fructose (0-10%)
- Sum = 10%

P x M
- $2^3 = 8$ experiments
- $2^3 \times SL\{3,2,+2\} = 64$
- $2^3 - 1 = 4$ experiments
- $2^3 - 1 \times SL\{3,1,+1\} = 16$
- $2^6 - 3 = 8$ experiments

Full
- $2^3 = 8$ experiments

Fraction
- $2^3 - 1 = 4$ experiments

P & M

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>AB'</th>
<th>AC'</th>
<th>ABC'</th>
</tr>
</thead>
<tbody>
<tr>
<td>E01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>E02</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>E03</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>E04</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>E05</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>E06</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E07</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>E08</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

(Cornell, 2002)
Method for transforming an orthogonal array into a mixture

- Start with the initial orthogonal array D_{Init}. For each of the n experiments and each of the q ingredients, replace the low level by the lower bound a_i and the high level by the upper bound b_i, leading to an intermediate design $D_{\text{Intermediate}}$ with elements p_{ti} ($t = 1...n, i = 1...q$).
- In $D_{\text{Intermediate}}$, none or almost none of the mixtures sum to the constant c.
- Transform $D_{\text{Intermediate}}$ into D_{Final} by adjusting the mixtures according to their excess or lack vs. total amount c:
 - In case of a mixtures summing to less than c, let the lack of total amount be w^-. Focus on the low level setting components p_{ti} of this mixture. One has to increase by w^- the sum of the selected levels. In order to accomplish it, allocate a portion of w^- to each of these levels proportionally to the range of variation of their respective components.
 - In case of a mixture t in excess of amount w^+, the principle remains the same. In this situation, one has simply to select the high levels p_{ti} of this mixture. And then decrease the selected high levels proportionally to the range of variation of their respective components.

(Box, Hau, 2001)
Method for transforming an orthogonal array into a constrained mixture

Mixture
- A=Sucrose (0.0 - 5.4%)
- B=Glucose (3.4 - 8.5%)
- Fructose (1.2 - 4.7%)

\[\text{Sum} = 10\% \]

The method works for
- Any type of constraints
- Multiple mixtures
- Nested mixtures

The table shows the transformation process with initial, intermediate, and final mixtures.

The diagram visually represents the transformation process.
This method is a consensus between established methods

The proposed design reaches best consensus between

- **D-efficiency** (Atkinson, 1992)
- **Coverage** (Johnson, 1990)

In this case, it is the only technique yielding values higher than 0.5 for both indexes.

<table>
<thead>
<tr>
<th>D-efficiency (2nd order)</th>
<th>Coverage Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Adjusted Mixture</td>
<td>0.513</td>
</tr>
<tr>
<td>(b) Extreme Vertices</td>
<td>0.070</td>
</tr>
<tr>
<td>(c) Saxena-Nigam</td>
<td>0.215</td>
</tr>
<tr>
<td>(d) Space-Filling</td>
<td>0.001</td>
</tr>
<tr>
<td>(e) Adjusted Mixture (80%)</td>
<td>0.008</td>
</tr>
<tr>
<td>(f) D-optimal (2nd order)</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>0.579</td>
</tr>
<tr>
<td></td>
<td>0.300</td>
</tr>
<tr>
<td></td>
<td>0.588</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>0.944</td>
</tr>
<tr>
<td></td>
<td>0.435</td>
</tr>
</tbody>
</table>
This method allows handling complex problems very easily

Phase 1 (27-4 → 8 experiments)
• Main effects of 4 orthogonal factors (partial replacement of wheat by up to 3 alternative grains + humectant type)
• First order model of 3 mixture factors (Mixture of 3 sugars summing to 10%)

Phase 2 (29-5 → 16 experiments)
• R=V for 4 process factors (humectant, soaking, cooking, drying)
• First order model of 5 mixture factors (Mixture of 5 alternative grains summing to 15%)
Reconciling mixture designs and factorial designs in order to identify best recipes in a holistic way

A.Rytz, M.Moser, M.Lepage, C.Mokdad, M.Perrot, N.Antille, N.Pineau

Agrostat 2016