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Abstract 
All food recipes are composed of three elements: ingredients, their respective 

amounts, and the way to process them. The art of a chef consists in mastering these 

three elements in a holistic way in his kitchen in order to deliver most pleasurable 

food. The challenge of the food industry is to do the same, but on a scale where 

intermediate tasting and adjusting is almost impossible. As a consequence, Design of 

Experiments (DoE) are commonly used to model the impact of mixture properties 

(e.g. mixture designs) or of process factors (e.g. orthogonal arrays) on the nutritional 

and sensorial characteristics of the foods. Only few approaches combine mixture and 

process in an efficient way (e.g. coverage, optimal) but they require defining global 

multivariate spaces that somehow artificially combine mixture and process 

parameters. This paper proposes a combined approach - based on orthogonal arrays - 

that projects ingredients on the mixture hyperspace in a very intuitive way. It is 

illustrated through an example that allowed significantly improving the nutritional 

value of a cereal product (i.e. 50% sugar reduction), while increasing consumer liking. 

 

Keywords: Design of Experiment (DoE), orthogonal arrays, mixture designs, cereals, 

nutrition, sugar reduction. 

 
 

1. Introduction 
 

Very schematically, a basic all-family cereal recipe is made of 80% wheat flour and 20% sucrose that 

is mixed, soaked, cooked and dried. In order to improve the nutritional value of the product, it was 

asked to reduce its final sugar content by 50%, without using any artificial sweetener or flavor, while 

maintaining highest consumer liking. 

This presentation describes the two-step approach that was used to achieve this goal: 1) test if natural 

generation of biscuit and caramel notes during the process could be a winning strategy thanks to their 

congruency with perceived sweetness and 2) optimize nutritional offer and achieve taste superiority.  

These two steps lead to a final product containing 75% wheat flour, 15% whole grains and 10% 

sugars.  

This example is used to illustrate the efficiency of our very intuitive way of reconciling mixture and 

factorial parameters in one experimental design. 

 

 



 
 AgroStat 2016 Congress, March 21-24 2016, Lausanne 
 

2. Method to reconcile mixture and factorial parameters  
 

2.1 Projecting three mixture parameters of a 27-4  
 

2.1.1 Constructing the design, including projection 
 

Biscuit and caramel flavors can be generated during cooking and drying if the soaked mix contains the 

necessary precursors (i.e. free reducing sugars, amino acids) and an appropriate humectant.  

The commonly used humectant is water, but it is known that the underlying chemical reaction could 

be triggered if adding another humectant to the water. As a consequence, humectant is a factorial 

parameter with two levels (water, water+). 

Amino acids cannot be added as such as ingredients, but they have to come from natural sources (i.e. 3 

grains or pulses with specific amino acid profiles are tested). Since it is not known which amino acid 

cocktail leads to best flavor generation, it is proposed to test various combinations of wheat 

replacement. Independent replacement of wheat flour by respectively 2% of each of these three 

sources is handled as three factorial parameters. 

The three reducing sugars (A, B, C) of interest for the reaction are all available as natural ingredients 

and they can simply replace part of the sucrose in the recipe. It is known that 3% of reducing sugars is 

required to generate biscuit and caramel notes (Illmann. et.al, 2009). The three reducing sugars are 

therefore considered as a mixture summing to a constant of 3% in final recipe, and following bounds 

were established for cost and nutritional constraints (expressed as % reducing sugars):  A=0-58%, 

B=34-85% and C=12-47%. Considering that B and C sum to a minimum of 46% (=34+12), ingredient 

A cannot exceed 54%. As a consequence, the experimental region is defined by the new bounds A=0-

54%, B=34-85% and C=12-47%. 

 

This experiment therefore features 1 humectant (factorial), 3 potential flour replacements (factorial) 

and 3 reducing sugars (mixture). These 7 parameters were investigated using a 27-4 saturated design 

(Hedayat et.al, 1999), as shown in table 1. 

 
DInit DIntermediate DFinal

A B C AB AC BC ABC A B C
vs. 

c

A 

Sugar A

B

Sugar B

C

Sugar C

AB

Grain 1

C

Grain 2

BC

Grain 3

ABC

humect.

C1 0 0 0 0 0 0 0 0 34 12 -54 21 54 25 0 0 0 W

C2 1 0 0 1 1 0 1 54 34 12 0 54 34 12 2 2 0 W+

C3 0 1 0 1 0 1 1 0 85 12 -3 2 85 13 2 0 2 W+

C4 1 1 0 0 1 1 0 54 85 12 51 28 60 12 0 2 2 W

C5 0 0 1 0 1 1 1 0 34 47 -19 10 43 47 0 2 2 W+

C6 1 0 1 1 0 1 0 54 34 47 35 33 34 33 2 0 2 W

C7 0 1 1 1 1 0 0 0 85 47 32 0 66 34 2 2 0 W

C8 1 1 1 0 0 0 1 54 85 47 86 21 54 25 0 0 0 W+  
Table 1: Design 27-4 with 3 projected mixture parameters 

 
The projection of the mixture part is a pragmatic simplification of the approach by Box and Hau 

(2001) and is described below: 

 Start with the initial orthogonal array DInit. For each of the n experiments and each of the q 

ingredients, replace the low level by the lower bound ai and the high level by the upper bound 

bi, leading to an intermediate design DIntermediate with elements pti (t=1...n, i=1...q). In DIntermediate, 

none or almost none of the mixtures sum to the constant total amount c. 

 Transform DIntermediate into DFinal by adjusting the mixtures according to their excess or lack vs. 

total amount c:  
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• In case of a mixtures summing to less than c, let the lack of total amount be w-. Focus 

on the low level setting components pti of this mixture. One has to increase by w- the 

sum of the selected levels. In order to accomplish it, allocate a portion of w- to each of 

these levels proportionally to the range of variation of their respective components.  

• In case of a mixture t in excess of amount w+, the principle remains the same. In this 

situation, one has simply to select the high levels pti of the mixture. And then decrease 

the selected high levels proportionally to the range of variation of their respective 

components. 

 
 

2.1.2 Comparing the projected mixture part with other approaches 
 

The proposed design is fully saturated and it allows to estimate a first order model for the three 

mixture parameters and main effects of factorial parameters. When considering the coverage of the 

mixture, the proposed design covers the experimental region relatively homogeneously. It is therefore 

closer to a space-filling logic than a D-Optimal logic (i.e. a D-optimal design would select the 3-4 

most extreme points for a first order model). 

In order to better compare our approach to four common approaches that cope with constraints in 

mixtures (Cornell, 2002), let us consider the projected mixture part only and let us consider a 2nd order 

model (for which our projection would be the same). The resulting designs are visualized in figure 1.  

 
Figure 1: Comparing 6 mixture designs for a 2nd order model  
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The proposed design leads to a very good compromise between D-efficiency (Atkinson, 1992) and 

coverage (Johnson et.al., 1990), as shown in table 2: it is the only technique yielding values higher 

than 0.5 for both indexes. 
D-efficiency (2nd order) Coverage Index

(a) Adjusted Mixture 0.513 0.579

(b) Extreme Vertices 0.070 0.300

(c) Saxena-Nigam 0.215 0.588

(d) Space-Filling 0.001 1.000

(e) Adjusted Mixture (80%) 0.008 0.944

(f) D-optimal (2nd order) 1.000 0.435  
Table 2: Comparing design strategies using D-efficiency and Coverage Index 

 
 

2.2 Projecting five mixture parameters of a 29-5 
 

The first design allowed to show that most interesting biscuit and caramel notes (i.e. most congruent 

with sweetness perception) were generated using 3% of the second tested sugar, that all three 

additional grains were useful (i.e. all amino acids were required for the best reaction), but no clear 

findings could be made for the humectant part. The necessary addition of three flours was a good 

opportunity to move from a pure wheat-based product to a multi-cereal product with interesting levels 

of whole grain. 

The second design therefore was about optimizing nutritional offer (i.e. maximizing whole grain 

content at a 50% reduced final sugar content) and achieve taste superiority.  

Five whole grains were tested summing to a total of 15% of the final recipe, but with different levels 

depending on nutritional and known taste impact (Grain1=3-10%, Grain2=2-10%, Grain3=2-5%, 

Grain4=0-2% and Grain5=0-8%). 

In parallel, 4 process parameters (i.e. humectant, soaking duration, cooking condition, and drying 

condition) were investigated for main effects and 2x2 interactions. 

The initial design was a 1/32 fraction of a 24x25 factorial design, which is a compromise plan of class 

one given by Addelman (1962). This saturated design covers the experimental region very well with as 

few as 16 different mixtures and allows investigating main effects and 2x2 interaction for the process 

part (A, B, C, D of the underlying Yates table) as well as a first order model for the mixture part 

(ABC, ABD, ACD, BCD, ABCD of the underlying Yates table).  

The projection of the mixture part follows the same approach and the final design is shown in table 3. 

 

Humect.
Soaking 

duration

Cooking 

condition

Drying 

condition
Grain1 Grain2 Grain3 Grain4 Grain5 ∑Grains

P01 W short mild mild 2.0 2.0 3.0 0.0 8.0 15.0

P02 W short mild strong 2.0 5.8 6.3 0.9 0.0 15.0

P03 W short strong mild 4.0 2.0 7.7 1.3 0.0 15.0

P04 W short strong strong 3.3 5.4 3.0 0.0 3.4 15.0

P05 W long mild mild 3.8 6.9 3.0 1.2 0.0 15.0

P06 W long mild strong 3.3 2.0 6.1 0.0 3.6 15.0

P07 W long strong mild 2.0 4.8 5.4 0.0 2.8 15.0

P08 W long strong strong 2.7 3.8 4.6 2.0 1.8 15.0

P09 W+ short mild mild 3.3 5.6 6.1 0.0 0.0 15.0

P10 W+ short mild strong 3.8 2.0 3.0 1.2 4.9 15.0

P11 W+ short strong mild 2.0 5.6 3.0 0.9 3.6 15.0

P12 W+ short strong strong 2.1 2.4 10.0 0.1 0.4 15.0

P13 W+ long mild mild 2.0 2.0 6.3 0.9 3.8 15.0

P14 W+ long mild strong 2.0 10.0 3.0 0.0 0.0 15.0

P15 W+ long strong mild 5.0 3.6 4.4 0.4 1.6 15.0

P16 W+ long strong strong 2.9 4.3 5.0 0.6 2.3 15.0  
Table 3: Design 29-5 with 5 projected mixture parameters 
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3. Discussion and conclusion  
 

Although most foods can be described as a processed mix of ingredients, few design of experiment 

techniques efficiently combine mixture and process parameters. We propose a very simple, intuitive 

approach basing on the partial projection of orthogonal arrays on a mixture hyperspace, following the 

ideas of Box and Hau. 

This approach appears to be extremely easy to implement even for very complex cases such as 

products with multiple mixtures (e.g. milk chocolate is a mixture of fat, protein and sugar, but fat is a 

mixture of various sources of fats, protein a mixture of various sources of proteins and sugar a mixture 

of various sugars). 

It is easy to show that for non-constrained mixtures, the approach leads to simplex-lattice designs. In 

case of constrained mixture, it is shown that this approach generally leads to best consensus between 

coverage and D-efficiency. 

The approach is illustrated through an example that allowed, in 24 trials (8+16), to significantly 

improve the nutritional value of a cereal product, moving from a basic product containing 80% wheat 

and 20% sucrose to a nutritional proposition, that achieves higher liking, and that features 75% wheat, 

15% whole grain and 10% sugars. 

The same design approach has been successfully applied to other food categories including 

confectionary, dairy, ice-cream, culinary, beverages and pet-food. 
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