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Introduction

Despite being a less well-known plant, there has been increasing interest in quinoa

(Chenopodium quinoa Willd.) for the past 15 years owing to its perceived superior

nutritional quality in comparison with other grains. Near infrared transmission (NIT)

spectroscopy can presently provide rapid and low-cost whole kernel analysis of starch,

moisture, protein, and oil percentages in cereals. Thus, the objective of this study

was to develop partial least square (PLS) models to accurately quantify protein

and fat contents by NIT spectroscopy.

In all cases, it was observed that as more PLS components were retained, higher R2

were achieved. However, as the prediction ability of the model cannot be based solely on

R2 values, the RMSEP values were primarily evaluated. RMSEP was found to exhibit a

different behaviour: in most cases RMSEP steadily decreased until attaining a minimum

value (at an optimal number of PLS components), at which point they increased at a

faster pace as more PLS components were retained (Fig. 2).

Figure 2: RMSEP Values as Affected by Number of PLS Components, Extracted from 

Spectra Pre-processed by Detrending and Multiplicative Scatter Correction for Protein 

For fat, R2 ranges from 0.588 to 0.815, while RMSEP ranges from 0.423 to 0.607%. For

protein, R2 ranges from 0.681 to 0.897, while RMSEP ranges from 0.523 to 0.627%

(Table 1). Subsequently, to find an optimal number of PLS components, RMSEP was kept

to a minimum while R2 was targeted to a reasonable value (˃0.70). Thus, in terms of

model predictability for fat content, in general SG2, SNV and DT filters led to more

accurate results than the other filters. Specifically, extracting 18 PLS components from

the SG2 pre-processed spectra (RMSEP=0.432; R2=0.728) produced comparable results

to extracting 16 PLS components from the SNV-processed spectra (RMSEP=0.438;

R2=0.754) and the DT-processed spectra (RMSEP=0.451; R2=0.786).

In the case of protein estimation, greater predictability of the models was generally

achieved by the SG2 and DT filters (Table 1). Specifically, extracting 16 PLS components

from the SG2+MSC pre-processed spectra produced statistics (RMSEP=0.598;

R2=0.859) that were comparable to the extraction of 14 components from the DT-

processed spectra (RMSEP=0.545;R2=0.833) and the DT+MSC-processed spectra

(RMSEP=0.597; R2=0.862).

Table 1: RMSEP adj (%) Statistic and R2 (in brackets) Obtained from Cross-Validation for 

Protein Quantification Using Individual and a Combination of Pre-Processing Filters

Proximal and NIT analyses
- Quinoa crops harvested in Peru were utilised. Quinoa grains samples amounted to

73 accessions which were of orange, beige, black and yellow colour.

- Near-infrared transmission (NIT) spectra were acquired by placing the grains directly

in an Infratec 1241 grain analyzer (Module Foss Tecator), using 60-mm quartz

cuvettes, and scanning the region 850-1050 nm. The spectra were recorded at

scanning step intervals of 2 nm to give 100 data points per sample. All raw spectral

data were then mean-centered and linked to the chemical analyses data. To

minimise the effect of changes in the baseline, the raw spectra were firstly pre-

processed using the following filters separately: multiplicative scatter correction

(MSC), first and second derivatives using the Savitzky-Golay method (SG1,

SG2), standard normal variate (SNV) and detrending (DT). In addition,

combinations of filters with MSC were also tested: SG1+MSC, SG2+MSC,

SNV+MSC and DT+MSC.

Statistical analyses
Separate PLS analyses were carried out using protein and fat contents as dependent

variables. For a specified number of PLS components, the cross-validation was set to

randomly remove 10 samples at once (prediction set), and estimate the root mean

square error of prediction (RMSEP) and the coefficient of determination (R2) for the plot

between the values predicted from the NIT model and the chemical analyses

observations. For each of the nine pre-processing filters, RMSEP and R2 statistics were

obtained for a number of PLS components ranging from 10 to 20. Thus, the optimal

numbers of Partial Least Squares (PLS) factors were deduced for every pre-processing

filter.

Conclusions

- Unlike the models for fat estimations, the application of MSC in conjunction with other

filters (SG2, DT) consistently enhanced the prediction capacity of the PLS models.

- The PLS models estimating fat yielded overall greater accuracy than those estimating

protein content, as indicated by their lower RMSEP values.

- Best predictions for fat were obtained by extracting 16-18 partial least square (PLS)

components from SNV, DT and SG2-treated spectra (mean square error of prediction,

RMSEP=0.432-0.451; R2=0.728-0.786) while best predictions for protein were

attained by extracting 14-16 PLS components from DT, SG2+MSC and DT+MSC-

treated spectra (RMSEP=0.545-598; R2=0.833-0.862).

Results

Applying the first and then the second derivative emphasized the peaks below and

above the baseline, providing the best resolution for the expected signals (Fig. 1).

Figure 1: Savitzky-Golay Second Derivative Transformed-Spectral Data From Quinoa 

Grains
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