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Abstract 
Quinoa (Chenopodium quinoa Willd.) is an Andean pseudo-cereal which has lately 
gained worldwide attention due to its high nutritional value. With views to speed up 
proximate analyses of quinoa grains, the aim of this study was to assess the feasibility 
of using Near-Infrared Transmittance (NIT) spectroscopy for rapid and accurate 
determinations. Peruvian-origin quinoa grains of 73 different accessions were subject 
to NIT spectrum analysis scanning the region 850-1050 nm. Moisture, protein, fat and 
ash contents were determined by approved methods. In order to assess the 
predictability of the NIT method, a cross-validation was performed using 10 random 
segments. Employing spectra pre-processed by standard normal variate, detrending or 
Savitzky-Golay second derivative and multiplicative scatter correction, higher 
proportions of explained variance were encountered for fat (0.786), protein (0.862) 
and ash (0.731) contents, than for moisture (0.369), when 14-16 partial least squares 
(PLS) components were retained. The cross-validation estimates of the root mean 
square error of prediction (RMSEP) were 0.707 for moisture, 0.537 for protein, 0.338 
for fat and 0.246 for ash contents. Thus, while the technique exhibited an acceptable 
performance in predicting fat, protein and ashes, other signal pre-processing should 
still be tested in order to improve the accuracy of the rapid determination of moisture. 
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1. Introduction 
 
Despite being a less well-known plant, there has been increasing interest in quinoa (Chenopodium 
quinoa Willd.) for the past 15 years owing to its perceived superior nutritional quality in comparison 
with other grains (Ferreira et al., 2015). Near infrared transmission (NIT) spectroscopy can presently 
provide rapid and low-cost whole kernel analysis of starch, moisture, protein, and oil percentages in 
cereals (Paulsen and Singh, 2004). Thus, the objective of this study was to assess the feasibility of 
accurately quantifying moisture, protein, fat and ash contents by NIT spectroscopy, applying partial 
least squares modelling. 
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2. Methodology 
 
2.1 Proximal and NIT analyses 
 
Quinoa crops (Chenopodium quinoa Willd.) harvested in Peru (from the National Agricultural 
University La Molina and Regional Development Centre – Highland), in different seasons between 
2010 and 2012, were utilised. Quinoa grains samples amounted to 73 accessions which were of 
orange, beige and yellow colour. Moisture, protein, crude fat and ash contents were determined using 
the reference methods 925.10, 920.87 (conversion factor of 6.25), 923.05 (FOSS Soxhtec) and 923.03, 
respectively, described in AOAC (2000). Determinations, done in triplicate, were averaged and 
converted to dry basis.  
 
Near-infrared transmission (NIT) spectra were acquired by placing the grains directly in an Infratec 
1241 grain analyzer (Module Foss Tecator), using 60-mm quartz cuvettes, and scanning the region 
850-1050 nm. The spectra were recorded at scanning step intervals of 2 nm to give 100 data points per 
sample. A total of 10 frequency scans were performed per sample, and carefully assessed for 
consistency. Frequency scans were averaged, and all raw spectral data were then mean-centered and 
linked to the chemical analyses data. To minimise the effect of changes in the baseline, the raw spectra 
were firstly pre-processed using the following filters separately: multiplicative scatter correction 
(MSC), first and second derivatives using the Savitzky-Golay method (SG1, SG2), standard normal 
variate (SNV) and detrending (DT). In addition, combinations of filters with MSC were also tested: 
SG1+MSC, SG2+MSC, SNV+MSC and DT+MSC. 
 

2.2     Statistical analysis 
 
The extraction of information from quinoa grain’s pre-processed spectra to estimate moisture, protein, 
fat and ash contents was performed by Partial Least Squares (PLS) analysis. Separate PLS analyses 
were carried out using moisture, protein, fat and ash contents as dependent variables, and statistical 
inferences were computed using the jack-knife cross-validation method. For a specified number of 
PLS components, the cross-validation was set to randomly remove 10 samples at once (prediction set), 
and estimate the root mean square error of prediction (RMSEP) and the coefficient of determination 
(R2) for the plot between the values predicted from the NIT model and the chemical analyses 
observations. For each of the nine pre-processing filters, RMSEP and R2 statistics were obtained for a 
number of PLS components ranging from 10 to 20. Thus, the optimal numbers of Partial Least Squares 
(PLS) factors were deduced for every pre-processing filter. The entire NIT spectra analysis was 
conducted using the “pls” and the “prospectr” packages in R version 3.2.2 (R Development Core 
Team).  

 

3. Results 
 
Tables 1 and 2 compile the PLS prediction results of quinoa fat and protein, respectively (results for 
moisture and ash contents are not shown). For fat, R2 ranges from 0.588 to 0.815, while RMSEP 
ranges from 0.423 to 0.607%. For protein, R2 ranges from 0.681 to 0.897, while RMSEP ranges from 
0.523 to 0.627%. In all cases, it was observed that as more PLS components were retained, higher R2 
were achieved. However, as the prediction ability of the model cannot be based solely on R2 values, 
the RMSEP values were primarily evaluated. RMSEP was found to exhibit a different behaviour (not 
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shown): in most cases RMSEP steadily decreased until attaining a minimum value (at an optimal 
number of PLS components), at which point they increased at a faster pace as more PLS components 
were retained.   
 

Filter 
applied 

Number of components 
12 14 16 18 

SG2 0.437 
(0.588) 

0.443 
(0.641) 

0.452 
(0.703) 

0.432 
(0.728) 

SG2 
+MSC 

0.429 
(0.601) 

0.444 
(0.669) 

0.472 
(0.71) 

0.496 
(0.732) 

SNV 0.449 
(0.535) 

0.437 
(0.666) 

0.438 
(0.754) 

0.460 
(0.804) 

DT 0.423 
(0.635) 

0.428 
(0.722) 

0.451 
(0.786) 

0.502 
(0.828) 

DT 
+MSC 

0.505 
(0.653) 

0.542 
(0.721) 

0.592 
(0.775) 

0.607 
(0.815) 

 
Table 1: RMSEP adj (%) Statistic and R2 (in Brackets) Obtained from Cross-Validation for Fat Quantification 

Using Individual and a Combination of Pre-Processing Filters: SG2 (Savitzky-Golay Second Derivative), 
SG2+MSC (Multiplicative Scattering Correction), SNV (Standard Normal Variate), DT (Detrend), DT+MSC. 

 
Subsequently, to find an optimal number of PLS components, RMSEP was kept to a minimum while 
R2 was targeted to a reasonable value (R2˃0.70). Thus, in terms of model predictability for fat content, 
in general SG2, SNV and DT filters led to more accurate results than the other filters (Table 1). 
Specifically, extracting 18 PLS components from the SG2 pre-processed spectra (RMSEP=0.432; 
R2=0.728) produced comparable results to extracting 16 PLS components from the SNV-processed 
spectra (RMSEP=0.438; R2=0.754) and the DT-processed spectra (RMSEP=0.451; R2=0.786). The 
DT+MSC filter, however, yielded the poorest prediction capacity among the filters shown in Table 1.  
Furthermore, MSC applied in combination with the other filters did not consistently enhance the 
prediction capacity of the models for fat determination. 
 
 

Filter 
applied 

Number of components 
10 12 14 16 

SG1 
+MSC 

0.538 
(0.695) 

0.542 
(0.716) 

0.627 
(0.754) 

0.626 
(0.813) 

SG2 0.596 
(0.693) 

0.614 
(0.757) 

0.610 
(0.777) 

0.603 
(0.796) 

SG2 
+MSC 

0.523 
(0.737) 

0.556 
(0.78) 

0.606 
(0.819) 

0.598 
(0.859) 

DT 0.546 
(0.695) 

0.587 
(0.7905) 

0.545 
(0.833) 

0.619 
(0.875) 

DT 
+MSC 

0.547 
(0.681) 

0.582 
(0.816) 

0.597 
(0.862) 

0.617 
(0.897) 

 
Table 2: RMSEP adj (%) Statistic and R2 (in brackets) Obtained from Cross-Validation for Protein 

Quantification Using Individual and a Combination of Pre-Processing Filters: SG1 (Savitzky-Golay First 
Derivative)+MSC (Multiplicative Scattering Correction), SG2 (Savitzky-Golay Second Derivative), SG2+MSC, 

DT (Detrend) and DT+MSC. 
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In the case of protein estimation, greater predictability of the models was generally achieved by the 
SG2 and DT filters (Table 2). Specifically, extracting 16 PLS components from the SG2+MSC pre-
processed spectra produced statistics (RMSEP=0.598; R2=0.859) that were comparable to the 
extraction of 14 components from the DT-processed spectra (RMSEP=0.545; R2=0.833) and the 
DT+MSC-processed spectra (RMSEP=0.597; R2=0.862). Unlike the models for fat estimations, the 
application of MSC in conjunction with other filters (SG2, DT) consistently enhanced the prediction 
capacity of the PLS models. Applying a SG2+MSC, and retaining 14 PLS components, the 
predictability of ash content (R2=0.731) was optimised but not that of moisture (R2=0.369). 
 

 

4. Conclusion 
 
The NIT technique in conjunction with PLS modelling can be effectively used for predicting protein, 
fat and ash contents of quinoa whole grains, although slightly better accuracy was obtained for fat 
content. A comparison of pre-processing filters through PLS cross-validation indicated that, in 
general, SNV, SG2 and DT are comparably good filters for fat estimation while DT and SG2 are better 
for protein estimation. Protein estimation can be enhanced by additionally applying MSC to the 
filtered signals. NIT technique with no waste generation, low cost, reduced time and no sample 
preparation can replace the laborious methods of analysis that are presently used for proximate 
analysis.  
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