VERACITY SCORING OF SOCIAL MEDIA CONTENT

Mark Wolff, Ph.D.
Advisory Industry Consultant
Health & Life Sciences Global Practice
SAS Institute
Cary, North Carolina
mark.wolff@sas.com
“While the individual man is an insoluble puzzle, in the aggregate he becomes a mathematical certainty”

Sherlock Holmes
Great interest in collecting and understanding health related information from a variety of Web data sources

Unsolicited Self-Reported Symptom-Treatment-Outcome Measurement
The objective of this requirement is to provide FDA with the resources needed to use social media to inform and evaluate FDA risk communications. Specifically, the objective is to provide FDA with:

- Analyses of social media that provide baselines on consumer sentiment prior to FDA communication and that depict changes in social media buzz following FDA communications
- In-house capability for social media monitoring; and Surveillance through social media listening for early detection of adverse events and food-borne illness.
- The scope of work includes social media buzz reports, a social media dashboard, and quarterly surveillance reports related to specific product classes.

The Food and Drug Administration (FDA) is announcing the following public workshop entitled “The Patient Preference Initiative: Incorporating Patient Preference Information into the Medical Device Regulatory Processes”.

The purpose of this workshop is to discuss ways to incorporate patient preferences on the benefit-risk trade-offs of medical devices into the full spectrum of the Center for Devices and Radiological Health (CDRH) regulatory decision making. It also aims to advance the science of measuring treatment preferences of patients, caregivers, and health care providers.

Incorporating patient-preference evidence into regulatory decision making

Martin P. Ho, Juan Marcos Gonzalez, Herbert P. Lerner, Carolyn Y. Neuland, Joyce M. Whang, Michelle McMurry-Heath, A. Brett Hauber, Telba Irony
A Patient Reported Outcome is any report of the status of a patient’s health condition that comes directly from the patient, without interpretation of the patient’s response by a clinician or anyone else.

Guidance for Industry
Patient-Reported Outcome Measures: Use in Medical Product Development to Support Labeling Claims
U.S. Department of Health and Human Services
Food and Drug Administration 2009

Any outcome evaluated directly by the patient himself and based on patient’s perception of a disease and its treatment(s) is called patient-reported outcome (PRO).

Reflection Paper on the Regulatory Guidance for the use of Health Related Quality of Life (HRQL) Measures in the Evaluation of Medicinal Products
European Medicines Agency 2005
Methods and Application for Determining the Integrity and Veracity of Medical Device Safety Related Data in Social Media

Mark Wolff, SAS Institute Inc., Cary, NC, USA
Michael Wallis, SAS Institute Inc., Cary, NC, USA

ABSTRACT

As more individuals, organizations and institutions rely on the internet for information to support decision making, the integrity and veracity of those data have become a critical issue. A key area of interest is the applicability and utility of social media data for device safety monitoring. Such data offer a potentially valuable resource for post-marketing device safety surveillance for the industry and regulators. Adoption of these data as a resource has been hampered by concerns related to the accuracy and reliability of these data and a lack of guidance from regulators. Applying the capabilities of SAS Text Analytics we propose a method for qualifying the veracity of unstructured data collected from internet sources. Further, we describe its application in post marketing medical device safety monitoring and signal detection.
EXAMPLE

“TWITTER DOTH PROTEST TOO MUCH, METHINKS”

MARCH 4, 2013

Twitter Reaction to Events Often at Odds with Overall Public Opinion

By Amy Mitchell and Paul Hitlin

THE PEW RESEARCH CENTER FOR THE PEOPLE AND THE PRESS
"The resulting dataset contained a high volume of irrelevant information, but provided a useful starting point."

"We did not seek to verify each individual report as truthful, but rather to identify overall associations between Twitter and official spontaneous report data as a preliminary proof of concept."
<table>
<thead>
<tr>
<th>RULES</th>
<th>PREDICTIVE MODELS</th>
<th>NETWORK ANALYTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Known Patterns events</td>
<td>Complex Patterns</td>
<td>Associative Linking</td>
</tr>
<tr>
<td>Rules and thresholds based on known behaviors</td>
<td>Identify patterns which describe inaccurate information</td>
<td>Discovery through automated link analysis</td>
</tr>
<tr>
<td>Biological/Clinical Plausibility</td>
<td>Apply unsupervised/supervised learning techniques</td>
<td>Collusive networks</td>
</tr>
<tr>
<td>Product label</td>
<td>Like patterns of comments and content</td>
<td>Understand complex multivariate relationships over time</td>
</tr>
<tr>
<td>IP Address/URL</td>
<td>Author verification</td>
<td>Use vectors and momentum of events/behavior as predictor</td>
</tr>
<tr>
<td>Author ID</td>
<td>Higher level concept disambiguation</td>
<td>Link authors to malicious content</td>
</tr>
</tbody>
</table>

ANOMALY DETECTION
- Unknown Patterns and Behaviors
- Algorithms used to understand unusual patterns
 - Multivariate outlier/inlier detection
 - Constant findings
 - Clustering/association analysis
 - Distribution analysis

PREDICTIVE MODELS
- Complex Patterns
 - Identify patterns which describe inaccurate information
 - Apply unsupervised/supervised learning techniques
 - Like patterns of comments and content
 - Author verification
 - Higher level concept disambiguation

NETWORK ANALYTICS
- Associative Linking
 - Discovery through automated link analysis
 - Collusive networks
 - Understand complex multivariate relationships over time
 - Use vectors and momentum of events/behavior as predictor
 - Link authors to malicious content

Proactively apply combinations of all approaches at entity and network levels
Multidimensional Temporal analysis in Social Media Posting
APPROACH

• Aggregate all posts for an identified Author
• Establish base line distributions and frequencies
 • Number of posts as a function of time
 • Frequency of key terms
 • Identify word count of each post
 • Identify cross-posting
• Apply Text Analytic technique to model each authors corpus of posts (Text Fingerprint)
• Score all posters with library of Author Models
 • This identifies bots or whether the poster is using multiple aliases or is acting in collusion

I am a person who has refractory epilepsy due to a malformation of the brain. I have had this for 36 years after much trying of new meds to get more control my Epileptologist highly recommended the VNS. After much debate and doubt about it I did go through with it last Fall 2004. I wish I could report all positive on it. However from getting sick from the surgery, having lost my voice for 8 weeks due to a paralysis of a vocal cord near the vagus nerve. To even being very sensitive to the VNs once it was turned on! have incredible doubts about the test that have been done. Know there are some major issues in my mind. I encourage all to research it as much as possible. Make sure you feel that it would be in best interest for your brother and ask him if he feels it is what he feels is what he wanted. If you want to talk further let me know. Best to your family!

AUTHOR: cedar
DATE: 04/12/2005
TIME: 1:46pm
Important Predictors of Social Media noise in PROM Analysis

- Frequency of Posting
- Word Count
- Cross-posting
How to build a “Lie Detector” for the internet;

• Semantic Field Normalization/Contextualization for Self-Reported Symptom-Treatment-Outcome Measurement in Web-based Media Sources

• Adaptation of “Semantic Nets” to Establish Veracity of Symptom-Treatment Outcome Reports in Health Related Web Interactions

• Behavioral context as a pathway to crafting semantic field normalization mappings in Clinician/Patient Reported Outcomes Data (C/PROM)
US FDA

PATIENT PREFERENCE

Obesity

Gastric Balloon, Band, Sleeve, Surgery

- Efficacy
 - Duration
 - Quality of Life
 - Weight Loss
- Safety
 - Adverse Events
 - Device Malfunction
 - Hospitalization
- Usage
 - Daily Life Impact

Epilepsy

RNS (Neuropace), VNS, DBS, AED

- Efficacy
 - Duration
 - Quality of Life
 - Seizure Reduction
- Safety
 - Adverse Events
 - Hospitalization
- Usage
 - Daily Life Impact
Patient preferences considered for the first time in FDA decision to approve first-of-kind obesity device

RTI Health Solutions partnered with the FDA to conduct a study on patients’ preferences which contributed to the Agency’s regulatory decision to approve a first-of-kind device to treat obesity.

This was the first time a patient preference study impacted a new device approval.

Incorporating patient-preference evidence into regulatory decision making

Surgical Endoscopy
January 2015
Martin P. Ho, Juan Marcos Gonzalez, Herbert P. Lerner, Carolyn Y. Neuland, Joyce M. Whang, Michelle McMurry-Heath, A. Brett Hauber, Telba Irony
Objectives
- Explore the feasibility of collecting patient preference information from a variety of social media sources on selected topics.
- Apply sentiment scoring method to reveal content-specific sentiment trends related to medical device treatments.

Background
- Social media has become a popular medium for individuals to express their opinions.
- After conducting a patient preferences survey on weight loss devices, CDRI explored sentiment analysis to harness patient preference from unstructured posts of social media for comparison with the survey results.
- Sentiment analysis is an evolving technology that applies text analytics to analyze a document and infer the author’s sentiment about a topic of interest, such as a medical treatment.
- CDRI and SAS collaborated to capture web-based patient sentiments on the benefits, risks, and other attributes of medical treatment to treat obesity and epilepsy.

Material and Methods
- Identified popular websites on treatments of obesity (surgery, sleeve, band, balloon) and epilepsy (RNS, VNS, DBS, AEDs).
- Veracity Scoring (Signal to noise reduction)
- Segmentation and Data Cleansing
- Sentiment Analysis
- Visualization and Exploration
- Incremental data crawling for real-time sentiment analysis compared to baseline

Results
Obesity Domain Dashboard

Patient Preference Attributes
- **Obesity**
 - Efficacy
 - Duration
 - Quality of Life
 - Weight Loss
 - Safety
 - Adverse Events
 - Device Malfunction
 - Usability
 - Hospitalization
 - Daily Life Impact

Epilepsy Domain Dashboard

An Example of Sentiment Analysis
- **Epilepsy**
 - Efficacy
 - Duration
 - Quality of Life
 - Seizure Reduction
 - Safety
 - Adverse Events
 - Hospitalization
 - Usability
 - Daily Life Impact

Conclusions
Developed upon advanced text analytics, sentiment analysis is a powerful method to harness timely patient preference information from unstructured yet increasingly big data in the social media to complement data collected from other sources.

Acknowledgments
The authors would like to acknowledge Division of Reproductive, Esoteric, and Biological Sciences and Division of Neurological and Physical Medicine Devices for their input on certain preference attributes and dashboard design.
“...You can, for example, never foretell what any one man will do, but you can say with precision what an average number will be up to. Individuals vary, but the percentages remain constant. So says the statistician.”

Sherlock Holmes