Recursive partitioning methods for identifying 1 **4 3** 4 4 relevant variables in a sparse unbalanced data set International Flavors & Fragrances Inc Nantes Atlan ire et de l'Aliment Orlane Briand¹, Ivanne Debec¹, Arnaud Montet², Lorraine de Malleray² & Evelyne Vigneau² 1 Sensometrics and Chemometrics Laboratory, ONIRIS, La Géraudière, Nantes 2 IFF, Neuilly Introduction The aim of this study was to explore various recursive partitioning methods when dealing with a sparse and unbalanced data set. \rightarrow It is proposed to use Classification and Regression Trees (CART)^[1], Conditional Inference trees (CI trees)^[4] and Random Forests (RF)^[2]. Besides their predictive ability, these methods are easy to interpret, providing and efficient way to identify relevant variables.

 \rightarrow In this case study, a quantitative quality response y, was to be related to a large number of quantitative predictors (X matrix), most of them being sparse (with zero values). Moreover, about one third of these predictors included only one non-null observation, giving rise to a very unbalanced dataset.

CART	CI trees	Random Forests
The CART algorithm partition the ini-		Random Forests are collections of trees (CART or CI trees) for more robust-
tial subset of observations at each	tion problem known with CART.	ness.
nodo into two groups in order to		

node into two groups in order to maximize a measure related to the variation of the node impurity.

Maximizes :

 $\Delta i(t) = i(t) - p_L i(t_L) - p_R i(t_R)$

Where $p_L = N_{tR}/N_t$, and $p_R = N_{tR}/N_t$

At each node :

Step 1 :

The association of each predictor to the response is assessed by a permutation test framework.

The predictor showing the strongest relationship to the response (lowest *p-value*) is chosen. If none of them reach the predefined significance level, the actual node is not further split.

Step 2 : Choice of splitting threshold.

Cl tree

CART favors splits in continuous variables and variables with numerous categories ^[5].

Caution : In our case study, this is to be considered because, even if the variables X are all quantitative, the more they are sparse, the less there are choices in the cut-off points.

Variable importance measures

- Useful tool for ranking.
- Most common criterion : Mean Decrease in Accuracy (MDA).
- ► The three types give almost the same ranking of variables.
 - \rightarrow by permutation

• "MDA-CART"

Determined by permuting the values of each variable and measuring how much the permutation decreases the accuracy of the model.

• "MDA-CI-perm"

Evaluated following the permutation principle of the MDA importance in 'RandomForest' but based on CI trees, instead of CART trees.

\rightarrow by random allocation

• "MDA-CI-rdalloc"

Each observation is randomly allocated to the child nodes if the split of their parent node is conducted in the variable of interest.

Conclusion

 \rightarrow Two frameworks of procedures were proposed in order to solve the variable selection problems caused by the sparse and unbalanced data set. The condi-

tional inference trees ^[4] seem to be an appropriate solution to this kind of regression problems. \rightarrow In the Conditional Inference trees framework, the "MDA-CI-rdalloc" measure provides an unbiased variable selection and allows variables with only one non-null value to have a significant measure of importance.

References

[1] Breiman, L., Friedman, J. H., Olshen R.A. & Stone, C. J. (1984). Classification and Regression Trees. Belmont, CA: Wadsworth. [2] Breiman, L. (2001). Random Forests. *Machine Learning*, 45, 5-32. [3] Hapfelmeier, A., Hothorn, T., Ulm, K. & Strobl, C. (2014). A new variable importance measure for random forests with missing data. Stat Comput, 24:21-34.

[4] Hothorn, T., Hornik, K. & Zeileis, A. (2006). Unbiased Recursive Partitioning: A conditional Inference Framework. Journal of Computational and Graphical Statistics, 15(3), 651-674. [5] Strobl, C., Boulesteix, A. L., Zeileis, A. & Hothorn, T. (2007). Biais in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 1-21.