MatrixCorrelation

Kristian Hovde Liland1,2, Tormod Naas1, Ulf Geir Indahl2
1) Nofima – Norwegian Institute of Food, Fisheries and Aquaculture research
2) NMBU – Norwegian University of Life Sciences

MatrixCorrelation is an R package for comparing data sets. It contains many methods, but emphasizes the use of the Similarity of Matrices Index (SMI). This is a new method that compares stable subspaces from coupled data matrices. Visualization for explorative data analysis and statistical testing of equality are included.

Matrix comparisons in the package

Ramsey’s matrix correlation measures:
• r1: inner product correlation
• r2: orientation-independent inner product correlation
• r3: spectra-independent inner product correlations (including orientation)
• r4: Spectra-Independent inner product correlations

RV type measures:
• RV: Original RV, much used in sensometrics
• RV2: Smilde’s variant (less affected by high dimensionality)
• Rvadj: Maye’s variant (not affected by high dimensionality)

Matrix subspace correlations:
• GCD: Yanai’s GCD Measure
• SMI: Similarity of Matrices Index

Cross-validated Principal Component Analysis (PCA) for complexity assessment:
• PCAcv

Method comparison

For simple comparison of various matrix correlation measures, the convenience function allCorrelations is included.

Sample a normal matrix and centre it:
X1 <- scale(matrix(rnorm(100*300), 100, 300), scale = FALSE)

Create a copy where the 3rd spectral component (SVD) has been removed:
X2 <- usv$u[,3]%*% diag(usv$d[3]) %*% t(usv$v[,3])
usv <- svd(X1)

Display the result for 5, 5 components:
allCorrelations(X1,X2, ncomp1 = 5, ncomp2 = 5)

SMI RV RV2 RVadj r1 r2 r3 r4 GCD
0.800 0.980 0.924 0.926 0.968 0.050 0.989 0.017 0.800

Similarity of Matrices Index

A two-step process starts with extraction of stable subspaces using PCA or some other method yielding two orthonormal bases. These bases are compared using Orthogonal Projection (OP / ordinary least squares) or Procrustes Rotation (PR).

The result is a similarity measure that can be adjusted to various data sets and contexts and which includes explorative plotting and permutation based testing of matrix subspace equality.

sens.OP <- SMI(Panell1, Panel2, ncomp1 = 3, ncomp2 = 3)
sens.PR <- SMI(Panell1, Panel2, ncomp1 = 3, ncomp2 = 3, projection = "Procrustes")
RV(Panell1, Panel2) = 0.93
plot(sens.OP, main = "Orthogonal Projection”, replicates = rep(1:6,each=3))
plot(sens.PR, main = "Procrustes Rotation”, replicates = rep(1:6,each=3))

References