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Abstract 
In the case of complex phenomenon, it is interesting to spread the points throughout 
the experimental domain. These designs are called Space-Filling Designs and are well-
known in the case of independent variables. 
In mixture problems, the variables which are the proportions of the various 
components are dependent. Therefore, classical uniforms designs could not be used. 
We propose two construction methods allowing the generation of uniform designs 
taking into account mixture constraints. 
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1. Introduction 
 
In many fields, such as cosmetic, pharmacy, food-processing industry, properties are often dependent 
on the proportion of various components in a mixture. In these studies, the input variables are not 
independent (their sum is equal to 1) since they are the proportions of the various components (their 
values are dimensionless numbers between 0 and 1). In order to represent the behavior of the 
responses (properties), mixture models and classical designs, as Scheffé designs [Scheffé], can be used 
to estimate the coefficients of the models. In the particular case of mixture with constraints, 
independent or relational constraints, whose consequence is a reduced domain of interest, D- or G-
optimal designs can be used. These both designs spread experimental points on the periphery of the 
experimental domain leaving “hollow” center which could be harmful to the modelling step. In the 
case of complex phenomenon, it seems to be interesting to explore the whole experimental domain 
with Space-Filling Designs (SFD), whose points are distributed as uniformly as possible throughout 
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the experimental space. The most known SFD [Fang] are Latin hypercubes, low discrepancy 
sequences, but are not well adapted to mixture problems.  
In this work, we propose two construction methods allowing the generation of uniform designs taking 
into account mixture constraints.  
 
 

2. Construction of Space-Filling Design for mixture 
 

2.1 Measures of uniformity 
 
When the experimental space dimension is higher than 2, the uniformity of the space filling cannot be 
visually evaluated. It is thus necessary to use measures in order to know if the distribution is uniform 
and if the space of the variables is well filled. Only the most used criteria proposed in the literature are 
presented.  
 
2.1.1 The Euclidean distance, MinDist [Johnson]  
  

 
with, X = x1, x2, ....., xn  [0,1]D, a set of n points in D dimensions. 
 
A higher value of MinDist should correspond to a more regular scattering of design points and ensures 
that a point is never too close to another point. 
 
 
2.1.2 The cover measure, Cov [Gunzburger]  
 

 

with,       and    
 
 
A low value of Cov corresponds to a distribution close to a regular grid and ensures that the points fill 
up the space. 
We can plot these values, MinDist and Cov, to characterize different points distributions (random, 
cluster, ordered ...). In the (MinDist, Cov) plane, the best space-filling designs correspond to a quasi-
periodical distribution which presents the best compromise between a regular grid (space filling) and a 
random distribution (uniformity). These designs are characterized by a low value of Cov and a high 
value of Mindist, which means that the desirable area is at the bottom, on the right. 
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2.2 Algorithms 
 
There are many algorithms to build uniform experimental designs when variables are independent but 
to apply these algorithms in the case of mixtures we must adapt them. 
 
2.2.1 WSP 
 
The Wootton, Sergent, Phan-Tan-Luu's algorithm (WSP) [Santiago] was initially developed to build 
SFD in independent variables space  and generate designs with good uniformity criteria whatever the 
number of dimensions. 
In this algorithm, points are selected from a set of candidate points so as to be at a fixed minimal 
distance (dmin) from each point already in the independent variables space. The number of points in the 
subset depends on the value of dmin. If the dmin value increases, the number of points in the final subset 
decreases.  
 
To apply the WSP algorithm in mixture studies, the set of candidate points must be generated in the 
mixture space, thus the selected points will be in the same space. Then, the minimal distance value, 
dmin must be fixed to obtain N points.  
For example, if we consider a set of 5000 candidate points in the three dependent variables space, the 
WSP algorithm select N=10 points when dmin=0.34 and N=20 points when dmin=0.215. 
These solutions are represented Figure 1. 
  

a. b. 

Figure 1: WSP algorithm applied to mixture design. a) Solution with N=10 points. b) Solution with 
N=20 points 

 
 
2.2.2 SbS 
 
The Step by Step algorithm (SbS) [Franco] is an a priori algorithm which builds a set of N points by 
iteration. The principle of this algorithm is to randomly choose one or several initial points then to add 
points at a distance R of the points already in the design. 
The particularity of this algorithm is that all points are at the same distance of each other, whatever the 
number N of points, which guarantees a uniform filling all over the domain. 
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As the first points are randomly chosen, for a same value R we can obtain several solutions; 
consequently, to determine the R value which will allow to obtain a number N of points, it is necessary 
to repeat the algorithm several times (Figure 2). 
 
 

 
Figure 2: Evolution of the number of points as a function of R distance for the SbS algorithm solutions 

in a mixture design for 3 components. For each R value, the algorithm is repeated 5 times. 
 
 
All solutions obtained by SbS algorithm present a set of points which are separated by the same R 
distance from each other. If we consider another initial point, the solution can be different but with the 
same properties and a close distance R (Figure 3). 
 
 

a. b. 
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c. d. 

Figure 3: Solutions obtained by SbS algorithm with N=10 points for R=0.34 (a. and b.) and with N=20 
points for R=0.21 (c. and d.) 

 
 

3. Results and comparison 
 
We can compare solutions obtained from these two algorithms by calculating the uniformity criteria 
such as MinDist and Cov.  
 
 

  MinDist Cov 

N = 10 points 

WSP (Fig 1 a.) 0.340 0.0097 

SbS (Fig 3 a.) 0.340 0 

SbS (Fig 3 b.) 0.340 0 

Random design 0.018 0.5661 

N = 20 points 

WSP (Fig 1 b.) 0.215 0.0319 

SbS (Fig 3 c.) 0.210 0 

SbS (Fig 3 d.) 0.210 0 

Random design 0.082 0.3624 
Table 1: Comparison of uniformity criteria for mixture designs obtained by WSP and SbS algorithms 

 
 

These values of uniformity criteria can be compared to those obtained with a random distribution with 
the same number of points. It is obvious that the two algorithms are equivalent and lead to uniform 
designs with good criteria.  
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4.  Conclusion 
 
When we work with dependent variables, several methods exist to build uniform experimental 
designs. In the case of mixtures, we propose two algorithms: the WSP algorithm which is adapted 
from the space-filling design for independent variables and a construction method which guarantees 
the uniform repartition of points in the dependent variables space. The solutions obtained by these 
algorithms present good values of criteria with a high value of MinDist and a low value of Cov 
measure that guarantee a good filling of the mixture space.   
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