Sensory characterization of products and preference study using paired comparison experiments

Lucile Riaboff, Thibault Schneider, supervised by Michel Semenou,
Oniris, College of Veterinary Medicine, Food Science and Engineering Nantes-Atlantic, Sensometrics and Chemometrics Laboratory, Nantes, France

Objective

Usually, the products’ sensory characterization is performed by a trained panel of judges. However, we suggest to establish the sensory profile of products using a panel of consumers and also to study their preferences, using paired comparison experiments.

Material and method

- **Products**
 - 6 apple juices were chosen:
 - Pure juice
 - Organic nectar
 - Cloudy juice

 Sensory evaluation: 6 products evaluated by 90 consumers, for 7 attributes in paired comparison.

 Preference study: 90 consumers evaluating products in paired comparison experiments.

- **Experimental design** (based on a Krutchik’s design [1]):
 - Balanced Incomplete Block with 90 consumers
 - 3 pairs
 - every product
 - 1 judge

Data analysis

- **Bradley-Terry-Luce model** [2] for sensory data
 - Supposing that:
 - the number of products
 - the number of consumers
 - The probability of stimulus i to be chosen to the stimulus j, is noted \(p_{ij} \). Therefore the Bradley-Terry-Luce model [BRADLEY, 1952] states that:
 \[
 P_{ij} = \frac{\pi_i}{\pi_i + \pi_j}
 \]
 Where \(\pi_i \) is the Bradley's score for the product i, such as \(i \in \{1, 2, ..., n\} \) and \(j \in \{1, 2, ..., n\} \).
 - The estimation of \(\pi_i \) is obtained by solving the maximum likelihood equation [3]

- **Model of segmentation** [4] taking into account differences in consumers’ preferences
 - Supposing the existence of T segments of consumers and \(p(t) \) the probability that an ordinary individual belongs to the group t.
 - We note \(p_{ij,t} \) the probability that the stimulus i is preferred to the stimulus j for the segment t.
 - As previously, for each class t, the probability can be written following the Bradley model:
 \[
 P_{ij,t} = \frac{\pi_i,t}{\pi_i,t + \pi_j,t}
 \]
 - Parameters \(p(t) \) and \(p(t) \) will be estimated for any \(t = 1 : 7 \) by maximum likelihood, using an algorithm type EM [5].
 - The selection of the number of classes can be achieved with a likelihood ratio test by Monte Carlo simulations.

Products’ profile obtained by the sensory analysis

![Image](image1.png)

All the following results were calculated using the R package CompR [6]

 Segmentation of consumers in homogeneous classes

![Image](image2.png)

A segmentation of consumers based on Monte Carlo simulation (P_Value = 12%), leads us to retain the two classes solution, with the following results.

- **Class 1 (49%)**
- **Class 2 (51%)**

Table 1: Products' Bradley's scores in each class and class's weight

<table>
<thead>
<tr>
<th>Class</th>
<th>Products</th>
<th>Bradley's score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td>Organic pure juice, Cloudy juice</td>
<td>0.21</td>
</tr>
<tr>
<td>Class 2</td>
<td>Pure juice, Organic nectar</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Link between sensory analysis and preferences

![Image](image3.png)

- Establishing a sensory profile from a panel of consumers with a paired comparison approach
- Suggesting a consumer’s segmentation based on their preferences
- Finding the link between consumer’s preferences and consumer’s perception of the products

Profits in marketing:
- Targeting the favourite products
- Pointing out the sensory characteristics expected
- Considering new products which respond to market demands

Conclusion

- Paired comparison easily achieved
- Test found playful by the panelists
- An increase of the number of products could lead to an important degree of incompleteness of the experimental design and so weaken the conclusions.

References