Sensory characterization of products and preference study using paired comparison experiments

Lucile Riaboff, Thibault Schneider, supervised by Michel Semenou,
Oniris, College of Veterinary Medicine, Food Science and Engineering Nantes Atlantic, Sensometrics and Chemometrics Laboratory, Nantes, France

Objective

 their preferences, using paired comparison experiments.

Material and method
Data analysis

- Products

6 apple juices were chosen :

comparison.
Preference study: 90 consumers evaluating products in paired comparison experiments

- Experimental design (based on a Kraitchik's design [1])

Balanced Incomplete Block with 90 consumers $\coprod_{\varnothing \text { report effect }}$

1 judge $\int_{\text {every product }}^{3 \text { pairs }}$

- Bradley-Terry-Luce model [2] for sensory data

Supposing that : $\left\{\begin{array}{l}n \text { the number of products } \\ H \text { the number of consumers }\end{array} \quad y_{i, \mathrm{~h}}=\left\{\begin{array}{l}0 \text { if } j \text { was chosen against } i \\ 1 \text { if } i \text { was chosen against } j\end{array}\right.\right.$
The probability of stimulus i to be chosen to the stimulus j , is noted p_{ij}. Therefore the Bradley-Terry-Luce mode (BRADLEY, 1952) states that
$p_{i j}=\frac{\pi_{i}}{\pi_{i}+\pi_{j}} \quad$ Where π_{i} is the Bradley's score for the product i , such as $\left.\pi \mathrm{i} \in\right] 0 ; 1\left[\right.$ for $\mathrm{i}=1, \ldots, \mathrm{n}$ and $\sum \pi \mathrm{i}=1$
The estimation of π is obtained by solving the maximum likelihood equation [3]

- Model of segmentation [4] taking into account differences in consumers' preferences

Supposing the existence of T segments of consumers and $\alpha(t)$ the probability that an ordinary individual belongs to the group t .
We note $p_{i j, t}$ the probability that the stimulus i to be preferred to the stimulus j for the segment t. As previously, for each class t, the probability can be written following the Bradley model:

$$
p_{i j, t}=\frac{\pi_{i, t}}{\pi_{i, t}+\pi_{j, t}}
$$

Parameters $\alpha(\mathrm{t})$ and $\pi(\mathrm{t})$ will be estimated for any $\mathrm{t}=1$: T by maximum likelihood, using an algorithm type EM [5] The selection of the number of classes can be achieved with a likelihood ratio test by Monte Carlo simulations.

Products' profile obtained by the sensory analysis
Segmentation of consumers in homogeneous classes

Link between sensory analysis and preferences

Figure 3 : Representation of descriptors with the preferences by class as supplementary variables

Conclusion

: Establishing a sensory profile from a panel of consumers with a paired comparison approach
: Suggesting a consumer's segmentation based on their preferences
$\%$ Finding the link between consumer's preferences and consumer's perception of the products

Profits in marketing :

- Targeting the favourite products
- Pointing out the sensory characteristics expected

Considering new products which respond to market demands
\% Paired comparison easily achieved
:Test found playful by the panelists

* An increase of the number of products could lead to an important degree of incompleteness of the experimental design and so weaken the conclusions.

References

[2] BRADLEY R.A., TERRY M.E. (1952). Rank analysis of incomplete block designs: The method of paired comparisons. Biometrika, 39, 324-45
21 Con
[5] DEMPSTER A.P. LAIRD N.M
[6] SEMENOU M. (2015). CompR: Paired Comparison Data Analysis. R package version 1.0. https://CRAN.R-project.org/package=CompR

