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Big Data = Volume, Velocity, Variety, Veracity

Stating the obvious: every semantic and pragmatic
information processing task related to human concerns
requires human input
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Big Data

Variety = Semantics = Meaning
Retrieval, data integration, information 
extraction, …

Veracity = Pragmatics = Utility
Data quality, credibility, authority, trust, 
…

For example: Google is a huge relevance feedback engine
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Big Data analysis today 

 Key innovation: capacity to automatically process and 
analyse huge volumes of data

 Key bottleneck: human input to make the processing 
meaningful

Example: recent progress in machine translation and image 
recognition with deep learning 

 Rely on huge corpuses with “ground truth”
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Observation
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Example: automatic generation of 
image captions

Vinyals, Oriol, et al. "Show and tell: A neural image caption generator." 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.
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An extreme perspective

No models!
No causality!
No understanding!
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The Reality

Chiticariu, Laura, Yunyao Li, and Frederick R. Reiss. "Rule-Based Information Extraction is Dead! Long Live Rule-Based Information 
Extraction Systems!." EMNLP. No. October. 2013.

 But often no ground truth available, in particular for applications 
with “not so big data” and involving expert knowledge
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Three case studies

1. Web credibility
How human input enables machine learning

2. Data integration
How humans and machines cooperate efficiently in a problem
solving task

3. Social Media Analytics
How humans interpret latent structures found by machine
learning
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Overview
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CASE STUDY 1: WEB CREDIBILITY
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How to Evaluate Web Credibility?

When you browse a webpage, how do you know it’s content 
is valid and accurate? 
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Increasingly difficult to assess credibility of Web content

 Economic incentives to manipulate information

– Marketing, fraud, political motives, etc.

 Enormous volume of web information
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Web Credibility – the problem

Presentation 
features

Adversary: Put $$$ to make it look credible?

non-credible site“looks” benign

User: Believe or not?
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 Numerous candidate features could indicate credibility?

 How to determine?

 Let experts annotate a collection of documents

11

Which features indicate credibility?
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Credibility Features

• Corpus of 1000 documents
• Evaluated by domain experts
• (prepared by MS Research)

• Identification of features providing the 
signals on credibility

Statistical tests
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The content of a webpage as well as the social popularity offer 
signals for credibility
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Credibility Evaluation
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A credible source?
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Analysing the content
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Not so credible statements
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Evaluation of statements

Transfer evaluation to semantically similar statements
(claims)

Reconcile project:
http://reconcile.pl/
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The data fusion algorithm

Web 
page

Statement

Features

User 
reputation

User 
credibility

Rating
Expectation-
Maximization 

Algorithm

Page 
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credibility



Distributed Information Systems Laboratory

 Human evaluation is at the origin of every automated
credibility evaluation task

 Same is true for any semantic or pragmatic task (e.g.
translation, image labeling etc.)

 The Big Question: where is the ground truth?

 The answer: ask the crowd or experts

19

Conclusions 1

Supervised Learning
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CASE STUDY 2: DATA INTEGRATION
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Person_name

Company_name

Example: Schema Matching
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• Integration of heterogeneous data sources

– Every project on Big Data analysis first has to integrate data from
different, heterogeneous data sources

– One of the long-standing open problems in data management (both
industry and research)

 How to find good “matches”?

 How to choose the “best matches”?

?
c1

c2

Name



Distributed Information Systems Laboratory

Approaches
for Identifying Correspondences
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 Manual matching

– still common practice today

 Schema matching tools

– Based on structural and 
content features

• names, domains, structure, 
values,  …

– Establish correspondences 
and rank according to quality

• Errors are frequent and 
unavoidable

• Works well for small schemas
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Data integration networks:
different experts may contribute partial matches
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Wisdom of the Network
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Person_name

Company_name

Name

Wisdom of the Network
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Which one would you choose?

Instead of considering only one mapping, consider whole networks of 
mappings: leverage knowledge from the network!

?
c1

c2

Pname

CName

c3

c4

c5
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 By combining different matches in a network we can
construct evidence for the correctness of those matches

– For example, a matching contributing to a “bad cycle” less likely
to be correct

 Idea: combine all this evidence and use probabilistic
reasoning to select the most likely matchings
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Probabilistic Reasoning

P. Cudré-Mauroux, K. Aberer and A. Feher. Probabilistic Message Passing in 
Peer Data Management Systems, ICDE 2006. 

features

matches
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Empowering the User
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• Probabilistic reasoning results in reasonable improvement of matching
quality, but
– a posteriori analysis can only identify potentially bad choices by experts, but not

correct them

• Better approach
– Let experts make better local decisions by providing them information on global

consistency and asking targeted questions

Q. V. H. Nguyen, T. Nguyen Thanh, Z. 
Miklos, K. Aberer and A. Gal et al. 
Pay-as-you-go Reconciliation in Schema 
Matching Networks. ICDE 2014. 
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 Asking the right questions is important

 Idea: optimize information 
gain with each question

27

Minimal Effort User Feedback?

Two possible solutions: 
{c1,c2,c3} and {c1,c4,c5}

 Ask c1 first 
 the network is unchanged 
 no uncertainty reduction.

 Ask c2 first 
 only 1 solution left
 the network becomes certain.
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 Information gain ordering strategy achieves savings of up
to 48% user effort compared to random ordering

 Outperforms the baseline with an average difference of
15% (precision) and 14% (recall)
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Results
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 Data Integration is a task that combines human and
machine intelligence

 The Big Question: How to minimize human effort and
maximize information gain?
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Conclusion 2

Active Learning
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CASE STUDY 3: SOCIAL MEDIA 
ANALYSIS
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 Social Media (e.g. Twitter) contains many (hidden) signals
on the public perception of issues of general interest

– nutrition, health, politics, environment etc.

 Goal: identify influencers, their communities, their topics
of interest and their stance towards given issues

 Methods
– Semantic content analysis to capture and classify relevant

content
– Social network analysis to capture and analyze social influence
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The problem
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1. Describe the interest (keywords, users, time, geographic)

2. Select (or collect) the data

3. Extract the key Concepts, Entities and Categories

4. Identify Topics and Communities

5. Select relevant Issues, Influencers and Events

6. Produce insights (correlations)

32

Typical analysis process
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Human-Machine Interaction

Termin-
ology Data Structures

Correlations

Collect and select data

New
Termin-

ology

Identify interesting termsExtend Terminology

Find hidden structures

Select and characterize
structures and data
of interest

Identify interesting 
correlations

New questions

Initial
question
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Creating Terminology

Exploring the topic “food” 
the system suggest related 
terms. We find terms 
related to food ingredients

We create a category 
“food ingredients”. The 
system proposes more 
related terms.

We select all terms that 
are related. We may 
repeat this step.

Finally we have a clean list 
of all terms on food 
ingredients.

Input:
~50 Mio tweets

Analysis method:
Word embedding
(word2vec)

Discovery of interesting
dimensions

Instantiation of dimensions
with terminology
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Data Collection

Using a semantically expanded terminology increases coverage significantly!
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 The system clusters the terms
on food ingredients according
to similarity

 The expert sees
– A clear distinction between

positive and negative terms

– Distinction between natural and
artificial ingredients

– Clusters of related terms, e.g.
vitamins, additives etc.

 We may use this to create
sub-categories of interest
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Categorization

acid

acrylamide

added sugars

additives

alcohol

allergens

antibiotics

antioxidants

arsenic

artificial sweeteners

aspartame

bpa

caffeine

calcium

calorie

carbohydrates

chemicals

cholesterol

corn syrup

dark chocolate

enzyme

fat

fatty acids

fiber

flavor

fluoride

fructose

glucose

gluten

grain

herbicides

hfcs

hormones

lactose

magnesium

minerals

nutrient

omega

pesticide

phytonutrients

potassium

preservatives

probiotics

protein

salt

sat fat

sodium

starch

stevia

sucrose

sugar

supplements

sweeteners

toxic chemicals

toxins

trans fat

vitamin

wheat

yeast

zinc

negative

positive

natural

artificial



Distributed Information Systems Laboratory

Analyzing social interactions we can identify clear communities
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Social Clustering

For each community we can identify
- Their influencers
- Their main concepts
- Potentially new interesting terminology



Distributed Information Systems Laboratory
Findings: Company influencers
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Findings: role of food ingredients 
in different countries
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 Machine learning applied to Big Data can reveal surprising
hidden structures with valuable insights

 Big questions:

– How to guide the machines to the right data and analysis

– How to make the resulting structures human-interpretable
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Conclusions

Unsupervised Learning
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 Big Data has impressive potential to create insights and solve
hard problems

 Human intervention in the analysis processes is essential for
obtaining meaningful results

 Three main types of intervention
– A priori: supervised learning

– Interactive: active learning

– A posteriori: unsupervised learning

 No one size fits all: their specific implementation depends
strongly on the use case
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Summary


