
1

Extension of ComDim for the 
analysis of (K+1) datasets;

Application in Sensometrics

A. El Ghaziri,      V. Cariou, 
D. N. Rutledge     &   E. M. Qannari



2

Formerly, called Common components and 
specific weights analysis (CCSWA);

The new name is ComDim;

Today, a new baby is born: P-ComDim;

…More babies are on the way.

Introduction
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ComDim: the setting

•

• …
Different types of multivariate data are measured on the same individuals.

• Examples :

– Sensory analysis  fixed or free choice profiling.

– Process technology multivariate measurements are performed 
at different stages of the process.

– Functional Genomics  genetic data, molecular data, phenotypic 
data...
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ComDim: how does it work?

X:                      W= XXT :    TQQW 

(standardized) principal components Variances recovered by 

the principal components
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ComDim : how does it work?

T

kk QQW 
Wk=XkXk

T : nxn matrix of scalar products between individuals

Common Principal Components

Diagonal matrix : the saliences : weights, total 
variances recovered by  the various common
components for dataset Xk.

TQQW 

(standardized) principal components Variances recovered by 

the principal components

X:                           W= XXT :    

With several Xk
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ComDim and Indscal

• Same premises as Indscal; but :

– No degenerate solutions;

– Simple algorithm;

– Orthogonal dimensions;

– Embedded spaces of representation;

– Several properties which are useful for the 
interpretation;

– Can be extended to handle various situations.
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ComDim and STATIS
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P-ComDim
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Example :

Xk : Sensory profiling datasets (flavor, aroma…)
Y : Preference scores.

Objective : Explore the relationships between Xk and Y.
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Strategy of analysis

• Consider

– The matrices Sk = XkXk
TYYT : an nxn matrix

– Find an (approximate) common SVD: 

Properties
The components in T are in the Xk spaces: useful to 

depict the products configuration. 

The components in U are in the Y space, optimally 

linked to the components in T.

• are the saliences which reflect the importance of each 
dimension for Xk <->Y

T

kk UTS 

k

Sk=XkXk
TYYT
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How to find the (approximate) common SVD?

• Step by step; each step is followed by a deflation procedure.

• Four algorithms;

Sk=XkXk
TYYT

First principal

component of

[t(1),…,t(K)]

First principal

component of

[u(1),…,u(K)]
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Illustration: relating sensory to preference data

The study concerns eight American dry-cured ham products labeled 
1SHORT, 2SHORT, 3SHORT, 4SHORT, 5SHORT, 1LONG, 2LONG 
and 3LONG. 

• Sensory evaluation:

– X1: Flavor (11 attributes), 

– X2: aroma (8 attributes),

– X3: texture (6 attributes).

• Preference data 

Consumer acceptability of the eight dry-cured hams was evaluated by 
a panel of 71 consumers who were segmented in six groups

Y =[c1, c2, c3, c4, c5, c6] : average scores in the six segments

Pham, A. J.; et al (2008).

Relationships between sensory descriptors, consumer acceptability and volatile

flavor compounds of American dry-cured ham. Meat Science.



12

Dim 1 Dim 2 Dim 3 Dim 4
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Comparison with multiblock PLS
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Conclusion

• P-ComDim : same performance as multiblock PLS in 
terms of prediction;

• Provides tools to better interpret the outputs 

• Suggests more extensions :

For instance :

– X1: Flavor (11 attributes),   Y1 : Preference of flavor

– X2: aroma (8 attributes),      Y2 : Preference of  aroma

– X3: texture (6 attributes),      Y3 : Preference of texture
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Conclusion

First principal

component of

[t(1),…,t(K)]

Sk=XkXk
TYkYk

T
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Conclusion

• Extension to a path modeling framework


